Сколько несократимых дробей со знаменателем 23 между числами 2,6 и 7,6 ?
2,6 < n / 23 < 7,6 ; n ∈ ℕ || *23 > 0 (умножаем двойное неравенство на 23) 2,6 *23 < n < 7,6*23 ; 59,8 < n < 174 ,8 ; но n ∈ ℕ (натуральное число) ,поэтому: 59 ≤ n ≤ 174 174 -(59-1) =174 - 58= 116 чисел среди этих чисел есть k=5 чисел кратных 23: 69,92,115,138,161. * * * 59 ≤23k ≤ 174⇔ 3 ≤ k ≤ 7 7-2 =5 чисел * * * их нужно исключить ,остается 116 - 5 =111 значений для n.
ответ : 111 (несократимых дробей со знаменателем 23 )
Сколько несократимых дробей со знаменателем 23 между числами 2,6 и 7,6 ?
2,6 < n / 23 < 7,6 ; n ∈ ℕ || *23 > 0
(умножаем двойное неравенство на 23)
2,6 *23 < n < 7,6*23 ;
59,8 < n < 174 ,8 ;
но n ∈ ℕ (натуральное число) ,поэтому:
59 ≤ n ≤ 174 174 -(59-1) =174 - 58= 116 чисел
среди этих чисел есть k=5 чисел кратных 23: 69,92,115,138,161.
* * * 59 ≤23k ≤ 174⇔ 3 ≤ k ≤ 7 7-2 =5 чисел * * *
их нужно исключить ,остается 116 - 5 =111 значений для n.
ответ : 111 (несократимых дробей со знаменателем 23 )
удачи !
D=(-(-5))²-4×3×2=25-24=1
x1=(-(-5)+√1)/2×3=(5+1)/6=6/6=1
x2=(-(-5)-√1)/2×3=(5-1)/6=4/6=⅔
b) 4x²-4x+1=0
(2x-1)²=0
2x-1=0
2x=1|÷2
x=½.
Можно решить через дескриминант:
D=(-(-4))²-4×4×1=16-16=0
Так как D=0, то квадратное уравнение имеет один корень:
х=((-b)/2a)
х=((-(-4)/2×4))
х=4/8, сокращаем на 4
х=½.
c) 2x-x²+3=0
-x²+2x+3=0
D=(-2)²-4×3×(-1)=4+12=16
x1=(-2+√16)/2×(-1)=(-2+4)/(-2)=2/(-2)=-1
x2=(-2-√16)/2×(-2)=(-2-4)/(-2)=(-6)/(-2)=3
можно решить данное квадратное уравнение по теореме Виета:
х²+px+q=0
x1+x2=-p
x1×x2=q
-х²+2х+3=0|×(-1)
х²-2х-3=0
х1+х2=-(-2)=2
х1×х2=-3
х1=-1
х2=3