Задано двузначное число. Если его разделить на сумму его цифр, то частное будет равно 5 и остаток – 4. Если же разделить его на сумму цифр, увеличенную на 4, то частное будет равно 4 и остаток – 5. Найдите исходное число.
Нехай подія Н1 полягає в тому, що стрілець, який влучає у мiшень з iмовiрнiстю 0.8. Н2-з iмовiрнiстю 0.7; Н3 - з iмовiрнiстю 0.6; Н4- з iмовiрнiстю 0.5
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
Відповідь:
Пояснення:
Нехай подія Н1 полягає в тому, що стрілець, який влучає у мiшень з iмовiрнiстю 0.8. Н2-з iмовiрнiстю 0.7; Н3 - з iмовiрнiстю 0.6; Н4- з iмовiрнiстю 0.5
Подія А - стрілець у мiшень не влучив.
Р(Н1)=5/18. Р(А/Н1)=1-0.8=0.2
Р(Н2)=7/18. Р(А/Н2)=1-0.7=0.3
Р(Н3)=4/18. Р(А/Н3)=1-0.6=0.4
Р(Н4)=2/18. Р(А/Н4)=1-0.5=0.5
Підрахуємо Р(А)=Р(Н1)×Р(А/Н1)+Р(Н2)×Р(А/Н2)+ Р(Н3)×Р(А/Н3)+Р(Н4)×Р(А/Н4)= 1/18×(5×0.2+7×0.3+4×0.4+2×0.5)=5.7/18=0.3167
Р(Н1/А)=Р(Н1)Р(А/Н1)/Р(А)=5/18×0.2/0.3167=0.1754
Р(Н2/А)=Р(Н2)Р(А/Н2)/Р(А)=7/18×0.3/0.3167=0.3684
Р(Н3/А)=Р(Н3)Р(А/Н3)/Р(А)=4/18×0.4/0.3167=0.2807
Р(Н4/А)=Р(Н4)Р(А/Н4)/Р(А)=2/18×0.5/0.3167=0.1754
Найбільша ймовірність, що стрілець належав до другої групи Н2
Объяснение:
Т.к. в условии сказано, что никакие две девочки не подарили валентинки одинаковому количеству мальчиков, то все девочки подарили разное количество валентинок. Причём одна и та же девочка не может подарить валентинку одному и тому же мальчику более одного раза, тогда:
Первая девочка подарила 1 валентинку, вторая девочка подарила 2 валентинки, третья 3 валентинки...
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 = 120 - валентинок было подарено, соответственно, мальчиков, которые получили валентинки было 120, а девочек, которые их дарили 15
Если бы мы взяли
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16 = 136 - это уже получилось бы, что 136 мальчиков получили валентинки и 16 девочек их дарили, а всего детей в школе 143
136 + 16 > 143 неверно