Достроим заданную призму до прямой четырехугольной призмы ABDCB1B1D1C1. Соединим отрезками точки В и D1, A1 и D1 . Ясно, что ВD1|| АC1, уголA1BD1- искомый. AA1=6a
По теореме Пифагора получим: (A1B)^2=a^2+36a^2=37a^2. Очевидно, что также (BD1)^2=37a^2
По теореме косинусов будем иметь: (A1D1)^2 = (A1B)^2+(BD1)^2-2A1B*BD1cosф, где - ф искомый угол.
Вычислим (A1D1)^2 также по теореме косинусов. (A1D1)^2=(A1B1)^2+(B1D1)^2-2A1B1*B1D1cos(180-60)=a^2+a^2+2a^2*1/2=3a^2.
Итак, 3a^2=37a^2+37a^2-2*(a корень из 37)*(a корень из 37)*cosф.
Нарисуйте рисунок такого осевого сечения. Есть равносторонний треугольник, есть вписанная в него окружность, значит, радиус этой окружности через сторону треугольника легко вычислить (потому как этот центр - он же и пересечение медиан). Объём конуса тоже легко выразить через ту же сторону.Осевое сечение конуса- равносторонний треугольник. Примем его сторону за a. Найдем площадь поверхности конуса. Sк.=Sб.к.+Sо.к., где Sб.к.- площадь боковой поверхности конуса, Sо.к.- площадь основания конуса. Sб.к.=Rl, где =3,14, R-радиус основания=1/2a=a/2, l-длина образующей=a, тогда Sб.к.=*a/2*a=a^2/2 Sо.к=R^2=(a/2)^2=a^2/4 Sк.=a^2/2+a^2/4=3a^2/4 Найдем площадь сферы вписаной в конус Sсф.=4r^2, где r-радиус сферы. Найдем радиус сферы за формулой r=S/p, где S- площадь сечения (площадь равностороннего треугольника) , p-периметр сечения=3a. S=a^2*sqrt(3)/4 r=a^2*sqrt(3)/4*1/3a=a*sqrt(3)/12. Sсф.=4*(a*sqrt(3)/12)^2=a^2/12. Найдем соотношение площади сферы к площади полной поверхности конуса Sсф./Sк.=a^2/12:3a^2/4=a^2/12*4/3a^2=1/9. ответ: Sсф:Sк=1:9. Площадь поверхности сферы относится к площади полной
Достроим заданную призму до прямой четырехугольной призмы ABDCB1B1D1C1. Соединим отрезками точки В и D1, A1 и D1 . Ясно, что ВD1|| АC1, уголA1BD1- искомый. AA1=6a
По теореме Пифагора получим: (A1B)^2=a^2+36a^2=37a^2. Очевидно, что также (BD1)^2=37a^2
По теореме косинусов будем иметь: (A1D1)^2 = (A1B)^2+(BD1)^2-2A1B*BD1cosф, где - ф искомый угол.
Вычислим (A1D1)^2 также по теореме косинусов. (A1D1)^2=(A1B1)^2+(B1D1)^2-2A1B1*B1D1cos(180-60)=a^2+a^2+2a^2*1/2=3a^2.
Итак, 3a^2=37a^2+37a^2-2*(a корень из 37)*(a корень из 37)*cosф.
cosф=(71a^2)/(74a^2)=71/74
.