Задание 3. Решить задачу с кругов Эйлера-Венна.
В группе 50 студентов. Из них 33 студента любят болтать на занятиях, 23 – любят решать задачи, 21 – любят на занятиях спать. Среди тех, кто болтает на занятиях, постоянно засыпают 17 человек, а среди тех, кто решает задачи, засыпает только 13. Болтать и решать задачи умеют 18 человек, а 11 человек успевают на одном занятии сделать три дела. Сколько студентов вообще ничего не любят?
Задание 4. Разбить высказывание на элементарные и записать в виде формулы логики высказываний. Проверить с таблицы истинности, является ли тавтологией полученная формула.
Если Иван подготовится к экзамену, то он сдаст экзамен успешно и его мама будет довольна или он не сдаст экзамен и его мама расстроится
Задание 5. На экзамене предлагается 30 задач, из них 10 – по множествам, 8 – по математической логике, остальные – по теории вероятностей. Для сдачи экзамена студент должен решить 3 задачи. Какова вероятность для студента сдать экзамен, если он умеет решать 8 задач по множествам, 6 – по математической логике и 10 – по теории вероятностей?
Задание 1. Исследовалось свойство личности, наличие которого можно было оценить числами от 0 до 6. Выборка состояла из 30 человек. Были получены данные, приведённые ниже.
Нарисовать график (гистограмму) распределения относительных частот. Найти моду, медиану, среднее, размах, дисперсию, стандартное отклонение. Перевести результаты исследований в z-шкалу.
4, 3, 2, 3, 5, 3, 4, 1, 4, 4, 3, 3, 2, 1, 3, 6, 3, 5, 2, 3, 2, 2, 4, 2, 4, 4, 3, 3, 5, 6, 2.
Давайте разберемся.
Пусть некоторое A - утверждение. Будем называть утверждением некоторое предположение, которое характеризуется либо как истинное и тогда утверждение равняется единице, либо как ложное и тогда утверждение равняется нулю.
В данном случае за утверждение принимается:
A - предположение, говорящее, что Первая буква гласная.
B - предположение, говорящее, что Последняя буква согласная.
Немного об операциях в т.н. алгебре логики (термин сложный и его нужно разъяснять отдельно, делается это в курсе т.н. "высшей алгебры").
Это сложение (известное также как объединение в теории множеств) и умножение (пересечение). Здесь их называют логическое "ИЛИ" (дизъюнкция) и логическое "И" (конъюнкция). Раз уж речь идет об алгебре, то, конечно, имеем также логическое "НЕ". По аналогии с теорией множеств, это дополнение к какому-то операнду (а суть унарная операция, интересная вещь).
Давайте запишем как нужно само выражение.
-A∧-B (вместо минусов нужно черточку над буквой).
Таблица истинности выглядит так:
В наименованиях столбцов пишите A и B и ваше выражение третьим.
Затем подставляете различные наборы значение A и B, A и B принимают только значения 0 и 1. Получаете соответственно 0 или 1.
"НЕ" - значит, утверждение обращается - было 1, стало 0, и наоборот.
"И" - дает 1 если оба операнда 1, иначе дает 0.
"ИЛИ" - дает 0 если оба операнда 0, иначе дает 1.
Вот и все. Заполняете и получаете нужное.
Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5