Вероятность это количество благоприятных исходов, деленная на общее количество исходов Или Вероятность того, что она бракованная = 0,03 (исходя из формулы) Получается, что на 100 батареек приходятся 3 бракованные. Вероятность того, что батарейки окажутся исправными соответственно равна 1-0.03 = 0.97 В упаковке 2 батарейки, при этом исправность каждой батарейки никак не зависит от исправности другой, значит, мы делаем вывод о том, что эти события независимы друг от друга и потому вероятности того, что в одной пачке будут 2 исправные батарейки будет равна произведению этих вероятностей. = 0.97*0.97 = 0.9409
Задача 1. Бросают игральный кубик. Событие А - выпало 2 очка (один исход из шести) Событие В - выпало нечётное количество очков (1,3,5 - 3 исхода из шести) Вероятность Р=Р(А)*Р(В) Р(А)=1/6 Р(В)= 3/6=1/2 Р= 1/6 * 1/2 = 1/12
Задача 2. Первая партия лампочек 4% брак (0,04) и 100%-4%=96% исправные (0,96) Вторая партия лампочек 5% брак (0,05) и 100%-5%=95% исправные (0,95)
а) Событие А - обе лампочки исправные Р(А)= 0,96*0,95=0,912 (или 91,2%) б) Событие В - хотя бы одна из лампочек окажется исправной Событие С - обе лампочки бракованные Р(С)=0,04*0,05=0,002 Р(В)=1-Р(С)=1-0,002=0,998 (или 99,8%)
Задача 3.
Чёрных шаров - 5 шт. Красных шаров - 4 шт. Белых шаров - 3 шт. Всего шаров - 5+4+3=12 шт.
Вероятность вынуть первым чёрный шар равна 5/12 После этого, в урне останется 12-1=11 шт. шаров Теперь вероятность вынуть красный шар равна 4/11 После этого, в урне останется 11-1=10 шт. шаров После этого, вероятность вынуть белый шар равна 3/10 Итак, итоговая вероятность Р=5/12 * 4/11 * 3/10 = 1/22
Или
Вероятность того, что она бракованная = 0,03 (исходя из формулы)
Получается, что на 100 батареек приходятся 3 бракованные. Вероятность того, что батарейки окажутся исправными соответственно равна 1-0.03 = 0.97
В упаковке 2 батарейки, при этом исправность каждой батарейки никак не зависит от исправности другой, значит, мы делаем вывод о том, что эти события независимы друг от друга и потому вероятности того, что в одной пачке будут 2 исправные батарейки будет равна произведению этих вероятностей. = 0.97*0.97 = 0.9409
Бросают игральный кубик.
Событие А - выпало 2 очка (один исход из шести)
Событие В - выпало нечётное количество очков (1,3,5 - 3 исхода из шести)
Вероятность Р=Р(А)*Р(В)
Р(А)=1/6
Р(В)= 3/6=1/2
Р= 1/6 * 1/2 = 1/12
Задача 2.
Первая партия лампочек 4% брак (0,04) и 100%-4%=96% исправные (0,96)
Вторая партия лампочек 5% брак (0,05) и 100%-5%=95% исправные (0,95)
а) Событие А - обе лампочки исправные
Р(А)= 0,96*0,95=0,912 (или 91,2%)
б) Событие В - хотя бы одна из лампочек окажется исправной
Событие С - обе лампочки бракованные
Р(С)=0,04*0,05=0,002
Р(В)=1-Р(С)=1-0,002=0,998 (или 99,8%)
Задача 3.
Чёрных шаров - 5 шт.
Красных шаров - 4 шт.
Белых шаров - 3 шт.
Всего шаров - 5+4+3=12 шт.
Вероятность вынуть первым чёрный шар равна 5/12
После этого, в урне останется 12-1=11 шт. шаров
Теперь вероятность вынуть красный шар равна 4/11
После этого, в урне останется 11-1=10 шт. шаров
После этого, вероятность вынуть белый шар равна 3/10
Итак, итоговая вероятность Р=5/12 * 4/11 * 3/10 = 1/22