За I четверть домашнее задание по алгебре было задано 24 раза. 1) Ученик восемь раз выполнил домашнее задание на оценку “5”.
Какова абсолютная частота выполнения домашнего задания на
оценку “5” у ученика за четверть?
2) Ученик 12 раз выполнил домашнее задание на оценку “4”.
Какова абсолютная частота выполнения домашнего задания на
оценку “4” у ученика за четверть?
3) Ученик 13 раз выполнил домашнее задание на оценку “4”.
Какова абсолютная частота выполнения домашнего задания на
оценку, отличную от “4”? найдите отнасительную частоту 1,2,3
а) По крайней мере один спортсмен выполнит норму:
то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994.
б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев.
По крайней мере два спортсмена выполнят норму:
Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют.
1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902.
Ровно два спортсмена выполнят норму:
p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.
Когда катер плывёт по течению, то течение плыть катеру, т.е. к собственной скорости катера добавляется скорость течения, т.е. в одном направлении у катера будет скорость 18+2=20 км/ч. А в другую сторону наоборот: течение мешает плыть катеру, т.е. скорость катера против течения будет: 18-2=16 км/ч. Получается первую половину пути-туда, катер проплыл за такое время: А/20, а вторую половину-обратно катер проплыл вот за какое время: А/16. Полное время пути катера 4,5 часа, т.е. можно составить уравнение относительно времени:
А/20 + A/16 = 4,5
Приведём к общему знаменателю:
A*16+20*A = 45
16*20 10
36A = 45
16*20 10
9А = 9
4*20 2
А = 1
80 2
2А=80
А=40 км - расстояние между пристанями.