Область значения функции - это множество, которое может принимать y
1) y = x² - 3x.
График - парабола. Так как ветви вверх, то минимальное значение находится в вершине.
y = -D/4a, где D = b² - 4ac
D = 9 - 4 * 1 * 0 = 9 - 0 = 9
y(min) = -9/4 = -2.25
Значит, множество значений y: [-2.25; +∞)
б) y = √x
Так как корень из числа - число неотрицательное, то множество значений такой функции равно y: [0; +∞)
в) y = 2/x
График - гипербола, ветви которых расположены в I и III четвертях. Данная функция имеет точку разрыва второго рода в точке x = 0, где стремится к -∞ слева, а к +∞ справа. Таким образом, множество значений этой функции y = (-∞; 0) ∪ (0;+∞)
г) y = √(x²) = |x|.
Модуль - функция неотрицательная, таким образом, ее область значений такая же, как и в пункте б)
y ⊂ [0; +∞)
д) y = 1/(2x-3)
Точно такая же гипербола, как и в пункте в)
Объяснение такое же:
y ⊂ (-∞; 0) ∪ (0; +∞)
е) y = 2x^4 + 3x² + 1
Выполним замену x² = t, получим:
y(t) = 2t² + 3t + 1.
Снова парабола, ветви вверх, значит, минимальное значение в вершине. Подробнее я расписал пункт а)
Объяснение:
1) Числа образуют арифметическую прогрессию с разностью d = 1.
S = (a1+aк)/2 * n, где n - количество, равное 199-101 = 98 чисел.
По-другому формула запишется:
S = (a1 + a1 +(n-1)d)/2 * n = (2a1 + (n-1)d)/2 * n
a1 = 101, n = 98, d = 1
S = (2* 101 + 97 * 1)/2 * 98 = 149 * 98 = 14602
2) Характеристическое свойство геометрической прогрессии:
bn² = bn+1 * bn-1
bn = 2x - 3
bn-1 = x + 1
bn+1 = x + 6
(2x - 3)² = (x + 1)(x + 6) ⇒ 4x² - 12x + 9 = x² + 7x + 6 ⇒ 3x² - 19x + 3 = 0 ⇒ x² - 19/3x + 1 = 0 ⇒ x1 + x2 = 19/3 по теореме Виета.
Объяснение:
Область значения функции - это множество, которое может принимать y
1) y = x² - 3x.
График - парабола. Так как ветви вверх, то минимальное значение находится в вершине.
y = -D/4a, где D = b² - 4ac
D = 9 - 4 * 1 * 0 = 9 - 0 = 9
y(min) = -9/4 = -2.25
Значит, множество значений y: [-2.25; +∞)
б) y = √x
Так как корень из числа - число неотрицательное, то множество значений такой функции равно y: [0; +∞)
в) y = 2/x
График - гипербола, ветви которых расположены в I и III четвертях. Данная функция имеет точку разрыва второго рода в точке x = 0, где стремится к -∞ слева, а к +∞ справа. Таким образом, множество значений этой функции y = (-∞; 0) ∪ (0;+∞)
г) y = √(x²) = |x|.
Модуль - функция неотрицательная, таким образом, ее область значений такая же, как и в пункте б)
y ⊂ [0; +∞)
д) y = 1/(2x-3)
Точно такая же гипербола, как и в пункте в)
Объяснение такое же:
y ⊂ (-∞; 0) ∪ (0; +∞)
е) y = 2x^4 + 3x² + 1
Выполним замену x² = t, получим:
y(t) = 2t² + 3t + 1.
Снова парабола, ветви вверх, значит, минимальное значение в вершине. Подробнее я расписал пункт а)
y = -D/4a; D = b² - 4ac = 1
y = -1/4 = -0.25
y ⊂ [-0.25; +∞)