Останется цифра 1. Чтобы дальше было легче объяснять, я переформулирую условие следующим образом: имеется 3 кучи камней (по 2013, 2014 и 2015 штук). За раз мы убираем по одному камню из любых двух куч, и добавляем 1 камень в третью. Если на одном шаге мы, допустим сделали так: +1, -1,-1 (т.е. добавили один камень в первую, и убрали по одному из 2-ой и 3-ей), то на следующем шаге мы можем сделать так: +1, -1, -1, либо -1,+1,-1 и последний вариант -1,-1,+1. В 1-ом случае в итоге у нас после этих двух шагов число камней в кучах изменится на +2,-2,-2 (т.е. в одной куче увеличится на 2, а в каждой из двух других куч, уменьшится на 2) во втором случае: 0,0,-2 и в третьем 0,-2,0 (т.е. в этих случаях уменьшится на 2 камня только в одной куче из трех). Таким образом, можно сделать вывод, что сколько бы камней не было в каждой куче, за каждые два шага, число камней в каждой куче станет больше или меньше на 2 или не изменится. Заметим, что всего камней в трех кучах четное число 2013+2014+2015=6042. За каждый шаг общее количество камней уменьшается на 1, значит к последнему шагу, когда останется только два камня, будет уже сделано 6042-2=6040 шагов. Т.е. будет сделано четное число шагов. Так как в первой куче и третьей - нечетное число, то за четное число шагов в первой и третьей куче может остаться только нечетное число камней (т.к. число камней за два шага может уменьшаться только на 2). Значит, последние два камня будут в первой и третьей кучах (там, где изначально было нечетное количество элементов). Таким образом, последний шаг будет заключаться в том, чтобы убрать из этих куч последние камни, и добавить 1 камень в среднюю кучу, т.е. ту, где было 2014 камней, т.е. ту, где у нас единицы. Т.е. последняя цифра будет 1.
График состоит из двух частей... двух парабол (ветви вниз))) ключевой точкой является х = -6 ---корень под-модульного выражения... по определению модуля: |x+6| = x+6 для x>= -6 |x+6| = -x-6 для x< -6 получим две функции (параболы): y = -x^2 - 7x - 6 для x>= -6 y = -x^2 - 15x - 54 для x< -6 ровно три общие точки с прямой, параллельной оси ОХ, получатся в "вершине левой параболы" и в точке х = -6 если х = -6, у = -(-6)^2 - 7*(-6) - 6 = -36+42-6 = 0 y=0 ---это первая прямая, удовлетворяющая условию, ---> m=0 для параболы y = -x^2 - 15x - 54 координаты вершины: х0 = -b/(2a) = 15/(-2) = -7.5 y0 = -(-7.5)^2 - 15*(-7.5) - 54 = -(225/4)+(225/2)-54 = = (450-225)/4 - 54 = (225/4) - 54 = (225 - 216)/4 = 9/4 = 2.25 ---> m=2.25
Если на одном шаге мы, допустим сделали так: +1, -1,-1 (т.е. добавили один камень в первую, и убрали по одному из 2-ой и 3-ей), то на следующем шаге мы можем сделать так: +1, -1, -1, либо -1,+1,-1 и последний вариант -1,-1,+1. В 1-ом случае в итоге у нас после этих двух шагов число камней в кучах изменится на +2,-2,-2 (т.е. в одной куче увеличится на 2, а в каждой из двух других куч, уменьшится на 2) во втором случае: 0,0,-2 и в третьем 0,-2,0 (т.е. в этих случаях уменьшится на 2 камня только в одной куче из трех).
Таким образом, можно сделать вывод, что сколько бы камней не было в каждой куче, за каждые два шага, число камней в каждой куче станет больше или меньше на 2 или не изменится. Заметим, что всего камней в трех кучах четное число 2013+2014+2015=6042. За каждый шаг общее количество камней уменьшается на 1, значит к последнему шагу, когда останется только два камня, будет уже сделано 6042-2=6040 шагов. Т.е. будет сделано четное число шагов. Так как в первой куче и третьей - нечетное число, то за четное число шагов в первой и третьей куче может остаться только нечетное число камней (т.к. число камней за два шага может уменьшаться только на 2). Значит, последние два камня будут в первой и третьей кучах (там, где изначально было нечетное количество элементов). Таким образом, последний шаг будет заключаться в том, чтобы убрать из этих куч последние камни, и добавить 1 камень в среднюю кучу, т.е. ту, где было 2014 камней, т.е. ту, где у нас единицы. Т.е. последняя цифра будет 1.
ключевой точкой является х = -6 ---корень под-модульного выражения...
по определению модуля:
|x+6| = x+6 для x>= -6
|x+6| = -x-6 для x< -6
получим две функции (параболы):
y = -x^2 - 7x - 6 для x>= -6
y = -x^2 - 15x - 54 для x< -6
ровно три общие точки с прямой, параллельной оси ОХ,
получатся в "вершине левой параболы" и в точке х = -6
если х = -6, у = -(-6)^2 - 7*(-6) - 6 = -36+42-6 = 0
y=0 ---это первая прямая, удовлетворяющая условию, ---> m=0
для параболы y = -x^2 - 15x - 54 координаты вершины:
х0 = -b/(2a) = 15/(-2) = -7.5
y0 = -(-7.5)^2 - 15*(-7.5) - 54 = -(225/4)+(225/2)-54 =
= (450-225)/4 - 54 = (225/4) - 54 = (225 - 216)/4 = 9/4 = 2.25 ---> m=2.25