В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия

Який з проміжків є розв'язком нерівності 6ҳ>48? (-безконеч.; 8) (-безконеч.; -8) (-8; +безконеч.) (8; +безконечность)

Показать ответ
Ответ:
Kaldomova2014
Kaldomova2014
30.01.2022 22:29
 а)  cos(πx)=x²-4x+5.
Имеем уравнение вида
 f(x)=g(x), где
f(x)=cos (πx); g(x)=x²-4x+5
Решаем графически.
f(x)= сos(πx) - ограниченная функция,её наибольшее значение равно 1.
g(x)=x²-4x+5 принимает  наименьшее значение,  равное 1при х=2.
х=2-  единственный корень уравнения.
Проверка.
cos(2π)=2²-4·2+5
1=1- верно.

О т в е т. х=2

б)cos(cosx)=1

cos x=2πn, n∈ Z

Но так как у= сosx - ограниченная функция,
-1≤ cosx ≤1, то
-1≤ 2πn≤1,  n∈ Z
Этому неравенству удовлетворяет единственное значение n=0.

Решаем уравнение
cosx=0
x=(π/2) + πk, k∈Z.

О т в е т. x=(π/2) + πk, k∈Z.
0,0(0 оценок)
Ответ:
sleep13
sleep13
23.11.2020 20:54

a) D(y) = [0; 1.25]

б) D(y) = (-∞; -10] U [8; 12) U (12; +∞).

Объяснение:

а) у = √(5х - 4х²)

Подкоренное выражение не должно быть отрицательным, поэтому

5х - 4х² ≥ 0

Найдём корни уравнения 5х - 4х² = 0

х(5 - 4х) = 0

х1 = 0;   х2 = 1,25

Делим на интервалы и определяем знаки на интервалах. Получаем следующую картинку

   -                      +                     -

0 1,25

Очевидно, что 5х - 4х² ≥ 0 при х∈[0; 1.25], поэтому область определения функции D(y) = [0; 1.25].

б)  y = (√(x² + 2x - 80))/(3х - 36)

Знаменатель функции не должен быть равен нулю, поэтому

3х - 36  ≠ 0  ⇒ х ≠ 12

Подкоренное выражение не должно быть отрицательным, поэтому

x² + 2x - 80 ≥ 0

Найдём корни уравнения x² + 2x - 80 = 0

D = 4 + 320 = 324

х1 = 0,5(-2 - 18) = -10

х2 = 0,5(-2 + 18) = 8

Делим на интервалы и определяем знаки на интервалах. Получаем следующую картинку

   +                      -                     +              +

-10 8 12

Очевидно, что x² + 2x - 80 ≥ 0 при х∈(-∞; -10] U [8; 12) U (12; +∞), поэтому область определения функции D(y) = (-∞; -10] U [8; 12) U (12; +∞).

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота