Пусть S площадь ограниченная графиком функции осями координат. Пусть точка B - пересечение графика y и оси абсцисс, точка A - пересечение графика y и оси ординат.
Координаты точек A и B:
A(0;-4)
B(2;0)
Пусть точка начало системы координат, тогда точка O имеет координаты O(0;0).
Узнаем уравнение прямой проходящей через точки A и B. Уравнение прямой с угловым коэффициентом в общем виде: .
∠СDA = 90°, т.к. Вписанный угол, опирающийся на диаметр, является прямым углом. Следовательно,
ΔСDA - прямоугольный. Сумма всех углов = 180°. Значит,
∠DAC = 180° - 90° - 54° = 36°
∠ВАD = ∠DAC +∠САВ, откуда
∠САВ = ∠ВАD - ∠DAC = 78°-36° =42°
∠САВ = 42°
№ 90
1) Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами, т.е.
квадратных единиц
Объяснение:
Построим график
Пусть S площадь ограниченная графиком функции осями координат. Пусть точка B - пересечение графика y и оси абсцисс, точка A - пересечение графика y и оси ординат.
Координаты точек A и B:
A(0;-4)
B(2;0)
Пусть точка начало системы координат, тогда точка O имеет координаты O(0;0).
Узнаем уравнение прямой проходящей через точки A и B. Уравнение прямой с угловым коэффициентом в общем виде: .
Пусть - площадь между прямой и функцией
Пусть и .
По формуле площади прямоугольного треугольника:
.
Промежуток интегрирования:
Докажем, что при
тогда можно сделать вывод, что
при .
По теореме:
.
квадратных единиц.
Объяснение:
№89
∠СDA = 90°, т.к. Вписанный угол, опирающийся на диаметр, является прямым углом. Следовательно,
ΔСDA - прямоугольный. Сумма всех углов = 180°. Значит,
∠DAC = 180° - 90° - 54° = 36°
∠ВАD = ∠DAC +∠САВ, откуда
∠САВ = ∠ВАD - ∠DAC = 78°-36° =42°
∠САВ = 42°
№ 90
1) Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами, т.е.
∠α = ½ ∪АВ, откуда
∪АВ = 2∠∝
α = 40° → β = 80° (1а ) → α + β =120° (1с )
α = 70° → β = 140° (2с) α + β =210°
α = 80° → β = 160° (3d) α + β = 240° (3b)
ответ: 1а, 1 с
2с
3d, 3b