Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)
1 1 10
1 2 9
1 3 8
1 4 7
1 5 6
2 2 8
2 3 7
2 4 6
2 5 5
3 3 6
3 4 5
4 4 4
Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.
И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.
Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.
Объяснение:
x²+bx+c=0
1-я горизонтальная строка.
(-2)²+6·(-2)+с=0; 4-12+c=0; c=8
x²+6x+8=0; D=36-32=4
x₂=(-6-2)/2=-8/2=-4
b=6; c=8; x₁=-2; x₂=-4
2-я горизонтальная строка.
3²+b·3+18=0; 9+3b+18=0; 3b=-27; b=-27/3=-9
x²-9x+18=0; D=81-72=9
x₂=(9+3)/2=12/3=4
b=-9; c=18; x₁=3; x₂=4
3-я горизонтальная строка.
1²-7·1+c=0; 1-7+c=0; c=6
x²-7x+6=0; D=49-24=25
x₁=(7+5)/2=12/2=6
b=-7; c=6; x₁=6; x₂=1
4-я горизонтальная строка.
0,5²+b·0,5+4=0
(1/2)² +1/2 ·b+4=0
1/4 +1/2 ·b+4=0
1/2 ·b=-4 1/4
b=-17/4 ·2/1=-17/2=-8,5
x-8,5x+4=0
x -17/2 ·x+4=0; D=289/4 -16=(289-64)/4=225/4
x₁=(17/2 +15/2)/2=32/4=8
b=-8,5; c=4; x₁=8; x₂=0,5