Решение Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T. Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана, ∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников AML и MBT (по двум углам: ∠MAL = ∠BTА₁, ∠ALB = ∠LBT — накрест лежащие при параллельных прямых AC, BT и секущих BL, AT) следует, что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T, то AM : MT = 1 : 7. Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
Объяснение:
1. a₁=-2 a₁₀=16 a₁₂=?
a₁₀=a₁+(10-1)*d=16
-2+9*d=16
9*d=18 |÷9
d=2 ⇒
a₁₂=a₁+(12-1)*d=-2+11*2=-2+22=20
ответ: а₁₂=20.
2. a₇=43 a₁₅=3 a₁₂=?
{a₇=a₁+6d=43
{a₁₅=a₁+14d=3
Вычитаем из нижнего уравнения верхнее:
8d=-40 |÷8
d=-5 ⇒
a₁+6*(-5)=43
a₁-30=43
a₁=73
a₁₂=73+11*(-5)=73-55=18
ответ: a₁₂=18.
3. a₁=30 d=-0,4 a₁₂=?
a₁₂=30+11*(-0,4)=30-4,4=25,6
ответ: a₁₂=25,6.
4. a₁₀=9,5 S₁₀=50 a₁₂=?
Sn=(a₁+an)*n/2
(a₁+9,5)*10/2=50
(a₁+9,5)*5=50 |÷5
a₁+9,5=10
a₁=0,5
a₁₀=a₁+9d=9,5
0,5+9d=9,5
9d=9 |÷9
d=1 ⇒
a₁₂=a₁+11d=0,5+11*1=0,5+11=11,5.
ответ: а₁₂=11,5.
Решение
Через вершину B проведем прямую, параллельную AC, продлим медиану AА₁ до пересечения с этой прямой в точке T.
Из равенства треугольников А₁BT и A А₁C (по стороне и двум прилежащим углам: B А₁ = А₁C, т. к. A А₁ — медиана,
∠B А₁T = ∠A А₁C — вертикальные, ∠ А₁BT = ∠ А₁CA — накрест лежащие при параллельных прямых AC, BT и секущей BC) следует, что BT = AC и A А₁ = KT. Из подобия треугольников
AML и MBT (по двум углам: ∠MAL = ∠BTА₁,
∠ALB = ∠LBT — накрест лежащие при параллельных
прямых AC, BT и секущих BL, AT) следует,
что AL : BT = AL : AC = AM : MT. Так как АА₁ = А₁T,
то AM : MT = 1 : 7.
Тогда AL : AC = 1 : 7, а AL : LC = 1 : 6.
решение во вкладыше