Примем планируемую скорость лыжника за х км/час.
Скорость с которой ехал лыжник реально, будет равна (х + 2) км/час.
Находим время, которое планировалось потратить лыжнику на путь, 15/х ( час)
Находим время, которое потратил лыжник на путь, 15/х+2 (час).
Переводим минуты в часы: 15 мин = 1/4 час.
Составляем уравнение:
15/х - 15/х+2 = 1/4, решаем;
Приводим к общему знаменателю, ищем дополнительные множители, умножаем на них, получаем:
60х + 120 - 60х =х(х+2),
получили квадратное уравнение, находим его корни. Для решения задачи подходит только положительный корень,
х = 10 (км/час) - с такой скоростью планировал ехать лыжник.
10 + 2 = 12 (км/час) - с такой скоростью ехал лыжник.
ответ: 12 км/час скорость лыжника.
Проверка: 15/10 - 15/12 = 1/4 (час).
Объяснение:
1. Преобразовать выражение в многочлен:
а) (2 – a)²=4-4а+а² квадрат разности
б) (n – 8)∙(n + 8)=n²-64 разность квадратов
в) (7b + 3x)²=49b²+42bx+9x² квадрат суммы
г) (2a + 3b)∙(3b – 2a)=9b²-4a² разность квадратов
2. Разложить на множители:
а) 16 – t²=(4-t)(4+t) разность квадратов
б) x² +10xy + 25y²=(x+5y)²=(x+5y)(x+5y) квадрат суммы
в) 0,0009 b² – 1=(0,03-1)(0,03+1) разность квадратов
3. Упростить выражение:
(b – 8)² – (64 – 16b) (b + 2) + (х – 1)(х + 1)=
=b²-16b+64-(64b+128-16b²-32b)+(x²-1)=
=b²-16b+64-(32b+128-16b²)+(x²-1)=
=b²-16b+64-32b-128+16b²+x²-1=
=17b²+x²-48b-65
4. Решить уравнение:
(4 - 2x)² = x(2,5 + 4x)
16-16x+4x²-2,5x-4x²=0
-18,5x= -16
x= -16/-18,5
x=32/37
При проверке левая часть уравнения равна правой, равна
5 и 211/1369.
Примем планируемую скорость лыжника за х км/час.
Скорость с которой ехал лыжник реально, будет равна (х + 2) км/час.
Находим время, которое планировалось потратить лыжнику на путь, 15/х ( час)
Находим время, которое потратил лыжник на путь, 15/х+2 (час).
Переводим минуты в часы: 15 мин = 1/4 час.
Составляем уравнение:
15/х - 15/х+2 = 1/4, решаем;
Приводим к общему знаменателю, ищем дополнительные множители, умножаем на них, получаем:
60х + 120 - 60х =х(х+2),
получили квадратное уравнение, находим его корни. Для решения задачи подходит только положительный корень,
х = 10 (км/час) - с такой скоростью планировал ехать лыжник.
10 + 2 = 12 (км/час) - с такой скоростью ехал лыжник.
ответ: 12 км/час скорость лыжника.
Проверка: 15/10 - 15/12 = 1/4 (час).
Объяснение:
1. Преобразовать выражение в многочлен:
а) (2 – a)²=4-4а+а² квадрат разности
б) (n – 8)∙(n + 8)=n²-64 разность квадратов
в) (7b + 3x)²=49b²+42bx+9x² квадрат суммы
г) (2a + 3b)∙(3b – 2a)=9b²-4a² разность квадратов
2. Разложить на множители:
а) 16 – t²=(4-t)(4+t) разность квадратов
б) x² +10xy + 25y²=(x+5y)²=(x+5y)(x+5y) квадрат суммы
в) 0,0009 b² – 1=(0,03-1)(0,03+1) разность квадратов
3. Упростить выражение:
(b – 8)² – (64 – 16b) (b + 2) + (х – 1)(х + 1)=
=b²-16b+64-(64b+128-16b²-32b)+(x²-1)=
=b²-16b+64-(32b+128-16b²)+(x²-1)=
=b²-16b+64-32b-128+16b²+x²-1=
=17b²+x²-48b-65
4. Решить уравнение:
(4 - 2x)² = x(2,5 + 4x)
16-16x+4x²-2,5x-4x²=0
-18,5x= -16
x= -16/-18,5
x=32/37
При проверке левая часть уравнения равна правой, равна
5 и 211/1369.