По теореме Пифагора x^2=y^2+z^2, т.е. квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, а у нас получается 2 равных прямоугольных треугольника.
Тогда выражаем
x^2=(x-6)^2+(x-3)^2
По формуле сокращённого умножения получаем
x^2= x^2-12x+36 + x^2-6x+9
Переносим x^2 в правую сторону уравнения и сокращаем остальное
0=x^2-18x+45
Решаем как простое квадратное уравнение
D+18^2-4*45=144=12^2
x1=(18+12):2=15
x2=(18-12):2=3
Значит гипотенуза равна 15 либо 3. Предположим, что она равна 3, тогда вторая сторона равно 0, т.к. по условию она на 3 меньше гипотенузы, а она не может быть равна 0, значит гипотенуза равна 15. Из неё вычисляем обе стороны:
ответ: 42см
Объяснение:
Диагональ будет x
По теореме Пифагора x^2=y^2+z^2, т.е. квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов, а у нас получается 2 равных прямоугольных треугольника.
Тогда выражаем
x^2=(x-6)^2+(x-3)^2
По формуле сокращённого умножения получаем
x^2= x^2-12x+36 + x^2-6x+9
Переносим x^2 в правую сторону уравнения и сокращаем остальное
0=x^2-18x+45
Решаем как простое квадратное уравнение
D+18^2-4*45=144=12^2
x1=(18+12):2=15
x2=(18-12):2=3
Значит гипотенуза равна 15 либо 3. Предположим, что она равна 3, тогда вторая сторона равно 0, т.к. по условию она на 3 меньше гипотенузы, а она не может быть равна 0, значит гипотенуза равна 15. Из неё вычисляем обе стороны:
15-6=9 15-3=12
И по формуле вычисляем периметр:
2*9+2*12=18+24=42
1
Допустим, что одно из данных чисел равно х.
По условию задачи числа являются натуральными и последовательными, значит второе число будет равно х + 1.
Получаем следующее уравнение:
х * (х + 1) = 132,
х^2 + x = 132,
x^2 + x - 132 = 0.
Решим данное квадратное уравнение. Найдем дискриминант:
D = 1^2 - 4 * 1 * (-132),
D = 1 + 528,
D = 529, следовательно √529 = 23.
Таким образом получаем:
х = (- 1 - 23) / 2 = -12 и х = (-1 + 23) / 2 = 11.
По условию числа являются натуральными, значит будут иметь вид:
11 и 11 + 1 = 12.
ответ: 11 и 12.
2.
По теореме Виета.
х1=2+√3,х2, получим
х1+х2=2+√3+х2=4, отсюда х2=2-√3,
тогда с равно с=х1*х2=(2+√3)(2-√3)=2²-(√3)²=4-3=1
т. е уравнение имеет вид x2-4x+1=0 и с=1