1) Графический метод Построим график функции y = 7 - 3x (выразили переменную у из системы уравнения (1)), графиком этой функции является прямая, которая проходит через точки (0;7), (7/3; 0) Аналогично строим график функции: y = 2x - 3, прямая, которая проходит через точки (0;-3), (3/2;0)
Построим эти графики. Графики пересекаются в точке (2;1)
Окончательный ответ: (2;1).
2) Решить систему уравнения методом подстановки. {x - y = -3 { 3x - 3y = -9 |:3
{x - y = -3 {x - y = -3 Из уравнения (1) выразим переменную y y = x + 3, подставляем во (2) уравнение вместо у x - (x + 3) = -3 x - x - 3 = -3 -3 = -3
ответ: ∀ x.
3) Метод алгебр сложения {x = 3 + y { 2x - y = 7
{x - y = 3 |*(-1) { 2x - y = 7
{-x + y = -3 {2x - y = 7 Сложим уравнения -x + 2x + y - y = -3 + 7 x = 4 y = -3 + x = -3 + 4 = 1
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.
Построим график функции y = 7 - 3x (выразили переменную у из системы уравнения (1)), графиком этой функции является прямая, которая проходит через точки (0;7), (7/3; 0)
Аналогично строим график функции: y = 2x - 3, прямая, которая проходит через точки (0;-3), (3/2;0)
Построим эти графики.
Графики пересекаются в точке (2;1)
Окончательный ответ: (2;1).
2) Решить систему уравнения методом подстановки.
{x - y = -3
{ 3x - 3y = -9 |:3
{x - y = -3
{x - y = -3
Из уравнения (1) выразим переменную y
y = x + 3, подставляем во (2) уравнение вместо у
x - (x + 3) = -3
x - x - 3 = -3
-3 = -3
ответ: ∀ x.
3) Метод алгебр сложения
{x = 3 + y
{ 2x - y = 7
{x - y = 3 |*(-1)
{ 2x - y = 7
{-x + y = -3
{2x - y = 7
Сложим уравнения
-x + 2x + y - y = -3 + 7
x = 4
y = -3 + x = -3 + 4 = 1
Окончательный ответ: (4;1).
Объяснение:
Квадратная таблица
A=(a11a21a12a22)
составленная из четырех действительных или комплексных чисел называется квадратной матрицей 2-го порядка. Определителем 2-го порядка, соответствующим матрице A (или просто определителем матрицы A) называется число
detA=∣∣∣a11a21a12a22∣∣∣=a11a22−a12a21.
Аналогично если
A=⎛⎝⎜a11a21a31a12a22a32a13a23a33⎞⎠⎟
- квадратная матрица 3-го порядка, то соответсвующим ей определителем 3-го порядка называется число
detA=∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣=
a11a22a33+a21a32a13+a12a23a31−a13a22a31−a12a21a33−a23a32a11.
opredelitelЭту формулу называют "правило треугольника": одно из трех слагаемых, входящих в правую часть со знаком "+", есть произведение элементов главной диагонали матрицы, каждое из двух других - произведение элементов лежащих на параллели к этой диагонали и элемента из противоположного угла матрицы, а слагаемые, входящие в со знаком минус, строятся таким же образом, но относительно второй (побочной) диагонали.