Решить систему уравнений алгебраического сложения.
z−2b=5
5z−6b=33
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе можно первое уравнение умножить на -3, чтобы получить 6b, или на -5, чтобы получить -5z. Умножим на -5:
-5z+10b= -25
5z−6b=33
Складываем уравнения:
-5z+5z+10b-6b= -25+33
4b=8
b=2
Теперь подставляем значение b в любое из двух уравнений системы и вычисляем z:
y = (x + 13)² * (e^x) - 15
Находим первую производную:
y` = (x + 13)² * (e^x) + (2x + 26) * (e^x) = (x + 13)*(x + 15) * (e^x)
Приравняем её к нулю:
(x + 13)*(x + 15) * (e^x) = 0
x₁ = - 13
x₂ = - 15
e^x > 0
Вычисляем значение функции:
f(-13) = - 15
f(- 15) = - 15 + 4/e¹⁵
fmin = - 15
fmax = - 15 + 4/e¹⁵
Используем достаточное условие экстремума функции для одной переменной.
y`` = (x + 13)² + 2*(2x + 26) * (e^x) + 2*(e^x) = (x² + 30x + 223) * (e^x)
Вычисляем:
y``(-15) = - 2/e¹⁵ < 0, значит эта точка - точка максимума
y``(-13) = 2/у¹³ > 0, значит эта точка - точка минимума
Решение системы уравнений b=2; z=9.
Объяснение:
Решить систему уравнений алгебраического сложения.
z−2b=5
5z−6b=33
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе можно первое уравнение умножить на -3, чтобы получить 6b, или на -5, чтобы получить -5z. Умножим на -5:
-5z+10b= -25
5z−6b=33
Складываем уравнения:
-5z+5z+10b-6b= -25+33
4b=8
b=2
Теперь подставляем значение b в любое из двух уравнений системы и вычисляем z:
z−2b=5
z=5+2b
z=5+2*2
z=9
Решение системы уравнений b=2; z=9.