Чтобы упростить выражение 5c/(6c - 6) - 4c/(3c + 3) + c^2/(2c^2 - 2) определим общий знаменатель и выполним действия между дробями.
В знаменателе первой дроби вынесем общий множитель за скобки: 6с - 6 = 6(с - 1).
В знаменателе второй дроби выносим 3 за скобки: 3с + 3 = 3(с + 1);
Знаменатель третьей дроби представим в виде: (2c^2 - 2) = 2(c^2 - 1) = 2(c - 1)(c + 1).
Общий знаменатель будет: 6(с - 1)(с + 1).
(5с(с + 1) - 4с * 2(с - 1) + 3с^2)/6(c - 1)(c + 1) = (5c^2 + 5c - 8c^2 + 4c + 3c^2)/6(c - 1)(c + 1) = 9c/6(c^2 - 1) = 3c/2(c^2 - 1).
ответ: 3c/2(c^2 - 1).
Чтобы упростить выражение 5c/(6c - 6) - 4c/(3c + 3) + c^2/(2c^2 - 2) определим общий знаменатель и выполним действия между дробями.
В знаменателе первой дроби вынесем общий множитель за скобки: 6с - 6 = 6(с - 1).
В знаменателе второй дроби выносим 3 за скобки: 3с + 3 = 3(с + 1);
Знаменатель третьей дроби представим в виде: (2c^2 - 2) = 2(c^2 - 1) = 2(c - 1)(c + 1).
Общий знаменатель будет: 6(с - 1)(с + 1).
(5с(с + 1) - 4с * 2(с - 1) + 3с^2)/6(c - 1)(c + 1) = (5c^2 + 5c - 8c^2 + 4c + 3c^2)/6(c - 1)(c + 1) = 9c/6(c^2 - 1) = 3c/2(c^2 - 1).
ответ: 3c/2(c^2 - 1).