Объяснение:
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
5; 5q; 5q² геометрическая прогрессия
5-20; 5q; 5q² арифметическая прогрессия
по характеристическому свойству
арифметической прогрессии
2 · 5q = -15 + 5q² |:5
q² - 2q - 3 = 0
D=b² - 4ac
D=4 + 12 = 16
q₁ = (2 + 4)/2 =3
тогда арифметическая прогрессия: -15; 15; 45
q₂ = (2 - 4)/2 = -1
тогда арифметическая прогрессия: -15; -5; 5
О т в е т: -15; 15; 45 или -15; -5; 5
А) все натуральные числа; 12; 1
Б) все целые числа -1; 12, 0; 1; -4;
В) все рациональные числа;0,4; -1; 12, 0; 1, 7/8; -4; 3,2
Г) целые, но не натуральные. -1; 0; -4;
2. запишите числа, противоположные данным: -3; 12: -4/5 3; -12: 4/5
3. запишите числа, обратные данным: 8/9; -5; 0,2 9/8;-1/5; 5
4. дан интервал (-2,4; 1,8). Запишите из этого интервала:
А) натуральное число 1
Б) целое число; -2; -1;0;1
В) отрицательное рациональное, не принадлежащее интервалу. -2,5
5. записать в виде бесконечной периодической дроби: 5/11. 0,(45)
Объяснение:
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
5; 5q; 5q² геометрическая прогрессия
5-20; 5q; 5q² арифметическая прогрессия
по характеристическому свойству
арифметической прогрессии
2 · 5q = -15 + 5q² |:5
q² - 2q - 3 = 0
D=b² - 4ac
D=4 + 12 = 16
q₁ = (2 + 4)/2 =3
тогда арифметическая прогрессия: -15; 15; 45
q₂ = (2 - 4)/2 = -1
тогда арифметическая прогрессия: -15; -5; 5
О т в е т: -15; 15; 45 или -15; -5; 5