В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
roky210
roky210
25.01.2021 19:28 •  Алгебра

Выполните возведение в степень Выполните возведение в степень (-2,5х степень 4(у степень 5) степень 2 а степень 7) степень 2

Показать ответ
Ответ:
maksim9182
maksim9182
02.05.2023 07:09
ОДЗ :    х² - 5х - 23 ≥ 0
             2х² - 10х - 32 ≥ 0
Решение системы двух неравенств не так  просто, поэтому при нахождении корней достаточно сделать проверку.
Подставить корни в систему неравенств или подставить корни в уравнение

Так как
2х²-10х-32=2(х²-5х-16)
то применяем метод  замены переменной

х²-5х-23=t    ⇒   x²-5x=t+23
x²-5x-16=t+23-16=t+7

Уравнение примет вид
√t + √2·(t+7)=5

или

√2·(t+7) = 5 - √t

Возводим обе части уравнения в квадрат
При этом правая часть должна быть положительной или равной 0
(  (5 - √t)≥0    ⇒√ t ≤ 5    ⇒  t ≤  25)

2·( t + 7) = 25 - 10 √t + t

или

10·√t = 25 + t - 2t - 14

10·√t = 11 - t

Еще раз возводим в квадрат, при условии, что 11 - t ≥ 0    t ≤ 11
Получаем уравнение

100 t = 121 - 22 t + t², при этом    t ≤ 11

t² - 122 t + 121 = 0

D=122²-4·121=14884 - 484 = 14400=120

t₁=(122-120)/2= 1     или    t₂= (122+120)/2 = 121  не удовлетворяет                                                          условию ( t ≤ 11)

возвращаемся к переменной х:

х² - 5х - 23 = 1         

х² - 5х - 24 = 0         
D=25+96=121=11²             
x₁=(5-11)/2=-3                      
х₂=(5+11)/2=8                      

Проверка
х = - 3         √(9 +15 - 23) + √2·(9 +15 - 16) = 5 - верно    1+4=5

х = 8            √(64 - 40 - 23) + √2·(64-40 -16) = 5 - верно    1+4=5

ответ. х₁=-3    х₂=8

Объясните, как решать подобные уравнения. желательно так подробно, насколько это возможно. буду приз
0,0(0 оценок)
Ответ:
maksimgrig12
maksimgrig12
19.09.2022 20:08
\sqrt{x^4+(a-5)^4}=|x+a-5|+|x-a+5|

Пусть xo - корень этого уравнения, тогда -xo также корень. Проверка:

\sqrt{(-x_o)^4+(a-5)^4}=|-x_o+a-5|+|-x_o-a+5|

\sqrt{x_o^4+(a-5)^4}=|-(x_o-a+5)|+|-(x_o+a-5)|

\sqrt{x_o^4+(a-5)^4}=|x_o-a+5|+|x_o+a-5|

Получилось тоже самое уравнение. Значит:

x_o=-x_o

2x_o=0

x_o=0

Подставим это значение в уравнение:

\sqrt{(a-5)^4}=|a-5|+|-a+5|

(a-5)^2=|a-5|+|-(a-5)|

(a-5)^2=|a-5|+|a-5|

|(a-5)|^2=2|a-5|

|(a-5)|^2-2|a-5|=0

|a-5|(|a-5|-2)=0

a=5, a=7,a=3

Не торопимся записывать эти значения в ответ. Обратите внимание, что это только претенденты на ответ. Теперь каждое значение нужно аккуратно подставить в изначальное уравнение, и проверить, на количество корней. Те значение. которые будут давать больше 1 корня, мы в ответ записывать не будем(по условию).

a=3

\sqrt{x^4+16}=|x-2|+|x+2|

Решаем это уравнение с модулями на промежутках.

1)x\in(-\infty ;-2]

\sqrt{x^4+16}=-x+2-x-2

\sqrt{x^4+16}=-2x

x^4+16=4x^2

x^4+16-4x^2=0

x^2=t;t \geq 0

t^2-4t+16=0

D=16-16*4

2) x\in(-2;2]

\sqrt{x^4+16}=-x+2+x+2

\sqrt{x^4+16}=4

x^4+16=16

x=0

3)x\in (2;+\infty)

\sqrt{x^4+16}=x-2+x+2

\sqrt{x^4+16}=2x

Заметим, что это ситуация аналогична пункту 2, решений тут нет.

Теперь складываем все полученные корни и того: 1 корень. Значит это значение пойдет в ответ.

a=5

\sqrt{x^4}=|x|+|x|

x^2=2|x|

|x|(|x|-2)=0

x=0,x=2,x=-2

Это значение не подходит, так как тут целых 3 корня.

a=7

\sqrt{x^4+16}=|x+2|+|x-2|

Заметим, что это уравнение копия уравнения, при a=3, значит тут будет всего 1 корень, и это значение нм подходит.

ответ: a=3,a=7.
Найдите все значения а при которых уравнение имеет одно решение.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота