а) 8х²+16х+8=8(х²+2х+1)=8(х+1)²
Пояснение:
сначала выносим общий множитель за скобку 8(х²+2х+1),
в скобках - по формуле сокращённого умножения: 8(х+1)²
Формула сокращённого умножения квадрат суммы: (а+b)²=a²+2ab+b²
б) у-4у³=у(1-4у²)=у(1²-(2у)²)=у(1-2у)(1+2у)
сначала выносим общий множитель за скобку: у(1-4у²),
потом выражение в скобках представляем как разность квадратов: у(1²-(2у)²),
затем по формуле сокращённого умножения: у(1-2у)(1+2у)
Формула сокращённого умножения разность квадратов: а²-b²=(a-b)(a+b)
Заметим, что данная функция не проходит через начало координат, а значит точка О(0;0) не является точкой касания.
Пусть точка касания А(а;в)
составим уравнение касательной в точке А
где y(x0)=в. x0=a
тогда уравнение касательной будет выглядеть так:
и эта прямая проходит через точку О(0;0)
подставим эти координаты
тогда уравнение касательной примет вид
Так как касательная у нас проведена к нашей функции то у них есть общая точка пересечения
т.к. в=1, то а=е/3 (ln3x=1: 3x=e; x=e/3)
тогда
и тогда точка касания А(е/3;1)
уравнение касательной
а) 8х²+16х+8=8(х²+2х+1)=8(х+1)²
Пояснение:
сначала выносим общий множитель за скобку 8(х²+2х+1),
в скобках - по формуле сокращённого умножения: 8(х+1)²
Формула сокращённого умножения квадрат суммы: (а+b)²=a²+2ab+b²
б) у-4у³=у(1-4у²)=у(1²-(2у)²)=у(1-2у)(1+2у)
Пояснение:
сначала выносим общий множитель за скобку: у(1-4у²),
потом выражение в скобках представляем как разность квадратов: у(1²-(2у)²),
затем по формуле сокращённого умножения: у(1-2у)(1+2у)
Формула сокращённого умножения разность квадратов: а²-b²=(a-b)(a+b)