Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
4sina*sin(п/3+a)*sin(п/3-a)=sin3a
Рассмотрим левую часть: 4sina*sin(п/3+a)*sin(п/3-a) = 4sina*(sin(п/3)*cos(a) + cos(п/3)*sin(a)) * (sin(п/3)*cos(a) - cos(п/3)*sin(a)) = (в двух последних скобках - это произведение суммы и разности двух чисел: (a-b)(a+b)=a²-b², воспользуемся этой формулой и раскроем скобки) = 4sina*( sin² (п/3)*cos² (a) - cos² (п/3) * sin² (a) ) =
4sina*( 1/4*cos² (a) – 3/4 * sin² (a) ) = (сокращаем на 4, и воспользуемся тем что соs² = 1-sin² ) = sina*( 1 – sin² (a) - 3*sin² (a)) = sina*( 1 –4*sin² (a))
Рассмотрим правую часть: sin3a= sina – 4*sin³ (a)) = sina*( 1 –4*sin² (a))
Следовательно, выражения в левой и правой частях тождественно равны.
Чтобы произведение равнялось 0 достаточно, чтобы один из множителей был равен 0.
-13,4 · (х - 9) · (х + 6,2) = 0
-13,4 ≠ 0 х - 9 = 0 х + 6,2 = 0
х = 9 х = -6,2
через дискриминант).
-13,4(х - 9)(х + 6,2) = 0
-13,4х² + 120,6х - 83,08х + 747,72 = 0
-13,4х² + 37,52х + 747,72 = 0
D = b² - 4ac = (37,52)² - 4 · (-13,4) · 747,72 = 1407,7504 + 40077,792 = 41485,5424
√D = √41485,5424 = 203,68
х₁ = (-37,52+203,68)/(2·(-13,4)) = (166,16)/(-26,8) = -6,2
х₂ = (-37,52-203,68)/(2·(-13,4)) = (-241,2)/(-26,8) = 9
ответ: х₁ = -6,2; х₂ = 9.