В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
mamrykovaksun
mamrykovaksun
26.11.2022 16:00 •  Алгебра

Выделите квадраты двухчлена из квадратных трехчленов
Задание 9.8


Выделите квадраты двухчлена из квадратных трехчленов Задание 9.8

Показать ответ
Ответ:
kerimagaevakk
kerimagaevakk
16.08.2022 10:04
Решение
y = (корень 4 степени из x^2-5x+6) + (корень 5 степени из x+3)/(корень квадратный из -x+2)
x² - 5x + 6 ≥ 0                          - x + 2 > 0, x < 2, x ∈( - ∞; 2)
x1 = - 1; x2 = 6
x ∈(- ∞; - 1] [6; + ∞)
ответ: D(y) = (- ∞; -1]

2. Упростите выражение ((корень 3 степени из a^2)-(2*корень 3 степени из ab)) / ((корень 3 степени из a^2) - (4*корень третьей степени из ab) + (4*корень 3 степени из b^2))
[(a²)^(1/3) - 2*(ab)^(1/3)] / [(a²)^(1/3) - 4*(ab)^(1/3) + 4(b²)^(1/3)] =
[a^(1/3) *(a^(1/3) - 2b^(1/3)] / [(a^(1/3) - 2b^(1/3)]² = a^(1/3) / [(a^(1/3) - 2b^(1/3)]

3. Решите неравенство: 
(x-1)^(1/6) < -x+3
[(x-1)^(1/6)]^6 < (-x+)^6
0,0(0 оценок)
Ответ:
Кираfox15
Кираfox15
15.02.2023 02:13
Площадь - интеграл между двумя точками пересечения графиков этих функций по функции 2x^2 (это видно если нарисовать их)
точки пересечения можно найти решив систему из этих двух уравнений
достаточно эти функции приравнять
2x^2 = 4x
x^2 = 2x
x = 2 и x = 0
(в второй строке мы поделили на x, это значит что дальнейшее решение не будет учитывать что x = 0 (поскольку на ноль делить нельзя), следовательно нужно дополнить ответ выражением x = 0)
это и есть две точки пересечения заданных функций
остается вычислить интеграл
\int\limits^2_0 {2x^2} \, dx =2 \int\limits^2_0 {x^2} \, dx = 2( \frac{2^3}{3} - \frac{0^3}{3}) = \frac{2^4}{3} = \frac{16}{3}

поскольку нам необходимо найти площадь между ДВУМЯ функциями, то этого недостаточно, ведь мы нашли площадь между функцией 2x^2 и осью Ox
этот же интеграл нужно взять и у 4x
\int\limits^2_0 {4x} \, dx =4 \int\limits^2_0 {x} \, dx = 4( \frac{2^2}{2} - \frac{0^2}{2}) = \frac{16}{2}
искомая площадь - разница двух только что найденных
\frac{16}{2} - \frac{16}{3} = \frac{48}{6} - \frac{32}{6} = \frac{16}{6} = \frac{8}{3}
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота