В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
sergeu3522p09njx
sergeu3522p09njx
24.11.2020 01:01 •  Алгебра

Вычислите производную f'(п/9) , если f (x)=lncos3x

Показать ответ
Ответ:
Love1011
Love1011
08.10.2020 21:32

f'(x)=ln(cos3x)=(3x)'*(cos3x)'*(lncos3x)'=3*(-sin3x)*(1/cos3x)=-3sin3x/cos3x=-3tg3x

при х=п/9, f'(x)=f'(п/9)=-3(tg(п/3))=-3*корень квадратный из 3

0,0(0 оценок)
Ответ:
dhkbzdyjnxx
dhkbzdyjnxx
08.10.2020 21:32

f(x)=lncos3x\\ \\

f'(x)=\frac{-3sin3x}{cos3x} = -3tg3x

f'(П/9)=-3*tgП/3=-3√3

0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота