Чтобы найти корни, необходимо приравнять выражение к нулю. Произведение равно нулю, когда один из множителей равен нулю. Таким образом: (х-5)*(х+4)=0 x=5 и x=-4 Далее чертим координатную прямую х и отмечаем на ней получившиеся корни (светлыми/выколотыми точками). Расставляем знаки в промежутках: + - + (-4)(5)>x Так как знак в исходном неравенстве был "<" (меньше), то выбираем тот промежуток, где значения функции отрицательны (там, где знак минус на координатной прямой), то бишь: х∈(-4;5). Получившееся выражение можно записать 2-мя х∈(-4;5) или -4<x<5 В ответе записывают один из получившихся вариантов.
1)Поскольку все стороны ромба равны друг другу, то периметр ромба вчетверо больше его стороны. Значит, одна из диагоналей ромба равна его стороне. Эта диагональ разбивает ромб на два равносторонних треугольника, а угол равностороннего треугольника равен 60 градусам.Диагонали ромба делят углы пополам, значит, тупой угол равен 60*2 - 120 градусам.ответ: тупой угол равен 120 градусам. 2)Острый угол будет равен 54, это 100%
(х-5)*(х+4)=0
x=5 и x=-4
Далее чертим координатную прямую х и отмечаем на ней получившиеся корни (светлыми/выколотыми точками). Расставляем знаки в промежутках:
+ - +
(-4)(5)>x
Так как знак в исходном неравенстве был "<" (меньше), то выбираем тот промежуток, где значения функции отрицательны (там, где знак минус на координатной прямой), то бишь: х∈(-4;5).
Получившееся выражение можно записать 2-мя
х∈(-4;5) или -4<x<5
В ответе записывают один из получившихся вариантов.