В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
зулейха4
зулейха4
22.04.2022 16:29 •  Алгебра

Вычислите площадь фигуры, ограниченной линиями а) y = x3+1, y=0, x=1, x=2. б) y=x2, y=5x-4.

Показать ответ
Ответ:
135670ш8ге5
135670ш8ге5
02.10.2020 19:18
Вычислить  площадь фигуры, ограниченной линиями :
a) y = x³+1, y=0, x=1, x=2. 
a =1; b=2 (границы интегрирования). 
S=интеграл (x³+1)dx =(x⁴/4 +x) | ₁ ² = (2⁴/4 +2) -(1⁴/4 +1) =(4+2) -(1/4+1) = 4 3/4 ≡ 4,75.
б) y=x²,  y=5x-4.
определим точки пересечения графиков
x² =5x -4 ;
x² -5x +4=0 ;  * ** (x-1)(x-4) * * *
x₁ =1;
x₂ =4.
a =1; b=4 (границы интегрирования)
S=интеграл (5x -4 -x²)dx = ( 5x²/2 -4x -x³ /3) =(5*4²/2 -4*4 -4³ /3) - (5*1²/2 -4*1 -1³ /3) =4,5.
* * *   y=5x-4  на отрезке  [1;4]  больше чем  y=x². * * *
0,0(0 оценок)
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота