Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
Хватит.
Объяснение:
Сначала найдем, сколько скотча Игорь потратил на упаковку 390 маленьких коробок:
390 * 50 = 19500 см - именно столько скотча в 3 1/4 рулонах.
Теперь найдем, сколько ему потребуется для упаковки 420 коробок по 70 см каждая.
420 * 70 = 29400 см.
Чтобы узнать, хватит ли ему пяти рулонов, нужно найти, сколько скотча в четырех рулонах. Для этого разделим 19500 на 3 1/4, и найдем, сколько скотча в одном рулоне.
19500 / 3,25 = 6000 см
Соответственно, в пяти будет 6000 * 5 = 30000 см.
30000 > 29400, значит 5 рулонов ему хватит.
Объяснение:
Чтобы выяснить проходит ли данная функция через эти точки надо :
1) либо построить график функции на координатной плоскости, потом отметить эти точки и посмотреть, лежать ли они на этом графике.
: более легкий: просто подставить координаты точек В и С в уравнение графика функции y=-1/5x
У точки В координаты (-15;3), значит х=-15, у=3
Подставляем в уравнение у=-1/5х
Если справа перемножить, то будет 3, ответы совпадают 3=3
Значит график функции проходит через точку В.
Аналогичным образом поступим с точкой С:
С(1;-5). Х=1, у=-5
Подставляем и проверяем :
-5=-1/5*1
-5=-1/5 неверно
Значит данный график функции не проходит через точку С