21 монету перевернуть нельзя, потому что при каждом перевороте остается нечетное количество монет решкой вверх. А 20 монет можно, потому что четность все время меняется. Для 20 монет (переворачиваем по 19 каждый раз) алгоритм такой. 0) Изначально лежит 20 монет решкой вверх. 1) Переворачиваем 19 орлом вверх. 1 остается решкой вверх. 2) Переворачиваем решку и 18 орлов. Стало 18 решек и 2 орла вверх. Один орел - которого не перевернули, второй - которого перевернули с решки. 3) Переворачиваем 2 орла и 17 решек. Стало 3 решки и 17 орлов вверх. 4) Переворачиваем 3 решки и 16 орлов. Стало 16 решек и 4 орла вверх. ... 9) Переворачиваем 9 решек и 10 орлов. Стало 11 решек и 9 орлов вверх. 10) Переворачиваем 10 орлов и 9 решек. Стало 10 решек и 10 орлов вверх. Тут главное не запутаться, потому что орлы и решки сравнялись. 11) Переворачиваем 10 орлов и 9 решек. Стало 11 решек и 9 орлов вверх. 12) Переворачиваем 11 решек и 8 орлов. Стало 12 орлов и 8 решек вверх. ... 19) Переворачиваем 18 орлов и 1 решку. Стало 19 решек и один орел вверх. 20) Переворачиваем 19 решек. Стало 20 орлов. Всё!
58/100 = 29/50; 42/100 = 21/50. Чтобы получились точные значения 58% и 42%, должно быть минимум 50 чел, тогда 29 чел = 58%, 21 чел = 42%. а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел. Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%. Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%. 42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%. ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия: 1) n*0,58 = k,p ~ k (целое) 2) k/n ~ 0,58 (при округлении до сотых) Те же 2 условия должны соблюдаться для 0,42. Опытным путем мне удалось найти минимальное количество - 12. 12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58% 12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%
Для 20 монет (переворачиваем по 19 каждый раз) алгоритм такой.
0) Изначально лежит 20 монет решкой вверх.
1) Переворачиваем 19 орлом вверх. 1 остается решкой вверх.
2) Переворачиваем решку и 18 орлов. Стало 18 решек и 2 орла вверх.
Один орел - которого не перевернули, второй - которого перевернули с решки.
3) Переворачиваем 2 орла и 17 решек. Стало 3 решки и 17 орлов вверх.
4) Переворачиваем 3 решки и 16 орлов. Стало 16 решек и 4 орла вверх.
...
9) Переворачиваем 9 решек и 10 орлов. Стало 11 решек и 9 орлов вверх.
10) Переворачиваем 10 орлов и 9 решек. Стало 10 решек и 10 орлов вверх.
Тут главное не запутаться, потому что орлы и решки сравнялись.
11) Переворачиваем 10 орлов и 9 решек. Стало 11 решек и 9 орлов вверх.
12) Переворачиваем 11 решек и 8 орлов. Стало 12 орлов и 8 решек вверх.
...
19) Переворачиваем 18 орлов и 1 решку. Стало 19 решек и один орел вверх.
20) Переворачиваем 19 решек. Стало 20 орлов.
Всё!
Чтобы получились точные значения 58% и 42%, должно быть минимум
50 чел, тогда 29 чел = 58%, 21 чел = 42%.
а) Если примерно, то для 40 чел будет 58% = 23,2 ~ 23 чел.
Но 23/40 = 0,575, то есть логично было бы написать 57,5%, а не 58%.
Поэтому ответ а) нет, 40 чел не может быть.
б) Для 48 чел будет 58% = 27,84 ~ 28 чел. 28/48 = 0,583 ~ 58%.
42% = 20,16 ~ 20 чел. 20/48 = 0,417 ~ 42%.
ответ б) да, 48 чел может быть.
в) Чтобы найти минимум n чел, должно соблюдаться 2 условия:
1) n*0,58 = k,p ~ k (целое)
2) k/n ~ 0,58 (при округлении до сотых)
Те же 2 условия должны соблюдаться для 0,42.
Опытным путем мне удалось найти минимальное количество - 12.
12*0,58 = 6,96 ~ 7 чел. 7/12 = 0,583 ~ 58%
12*0,42 = 5,04 ~ 5 чел. 5/12 = 0,427 ~ 42%