Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)
Повысили на 20% - стало 120%
Снизили на 10% от 120%, т.е. на 12%
Стало: 120 - 12 = 108%
Второй шкаф: Первоначальная цена - 100%
Снизили на 10% - стало 100 - 10 = 90%
Повысили на 20% от 90%, т. е. на 90*0,2=18%
Стало: 90 + 18 = 108%
Цены шкафов после изменения остались одинаковые.
2) 0,125³ * 32² = (1/2³)³ * (2⁵)² = 1/2⁹ * 2¹⁰ = 2¹⁰⁻⁹ = 2
0,5⁻² = (1/2)⁻² = 2² = 4