Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3.
Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π.
Это в том случае, если косинус х.( без скобок).
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 83). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
83 = √а
(83)² = (√а)²
а=6889;
b) Если х∈[0; 36], то какие значения будет принимать данная функция?
у= √х
у=√0=0;
у=√36=6;
При х∈ [0; 36] у∈ [0; 6].
с) y∈ [14; 28]. Найдите значение аргумента.
14 = √х
(14)² = (√х)²
х=196;
28 = √х
(28)² = (√х)²
х=784;
При х∈ [196; 784] y∈ [14; 28].
d) Найдите при каких х выполняется неравенство у ≤ 5.
√х <= 5
(√х)² <= (5)²
х <= 25;
Неравенство у ≤ 5 выполняется при х <= 25.