Вычисли значение функции, которая задана формулой у = 3,1х – 7, если значение аргумента равно 4.2. Вычисли значение функции, которая задана формулой у = 3,1х – 7, если значение аргумента равно 4.
Пусть велосипедист проехал первый участок пути со скоростью Х км/ч , тогда второй участок пути он проехал со скоростью (Х–6) км/ч. Следовательно на первый участок он потратил 18/Х ч, а на второй участок 6/Х-6 ч, затратив на весь путь 1,5 часа, что равно 3/2 ч. 18/Х + 6/Х-6 = 3/2 (Приводим к общему знаменателю) 36Х–216+12Х=3Х2–18Х (Переносим все в одну сторону) 3Х2–18–36Х+216–12Х=0 3Х2-66Х+216=0 (сокращаем на три) Х2–22Х+72=0 По теореме Виета: Х1+Х2=22 Х1Х2=72 Х1=4-не соответствует условию задачи. Х=18 Второй участок пути=18-6=12км/ч
Дано:
у(х) = - 3х+1
Найти: y(-2); у (2/3); y(0); y(-0,1).
Решение:
1) х = - 2
у(-2) = -3 · (-2) + 1 = 6 + 1 = 7
у(-2) = 7;
2) х = ²/₃
у(²/₃) = -3 · ²/₃ + 1 = -2 + 1 = - 1
у( ²/₃) = - 1;
3) х = 0
у(0) = -3 · 0 + 1 = 0 + 1 = 1
у(0) = 1;
4) х = - 0,1
у(-0,1) = -3 · (-0,1) + 1 = 0,3 + 1 = 1,3
у(- 0,1) = 1,3.
2.
Дано:
у(х) = - 3х+1
у₁=0;
у₂= - 2;
у₃=1/2;
у₄=-1,1.
Найти: х₁; х₂; х₃; х₄
Решение:
1) у₁=0
0 = - 3х + 1
3х = 1 - 0
3х = 1
х₁ = ¹/₃
2) у₂ = - 2
- 2 = - 3х + 1
3х = 1 + 2
3х = 3
х = 3 : 3
х₂ = 1
3) у₃ = ¹/₂
¹/₂ = - 3х + 1
3х = 1 - ¹/₂
3х = ¹/₂
х = ¹/₂ : 3
х₃ = ¹/₆
4) у₄ = - 1,1
- 1,1 = - 3х + 1
3х = 1 + 1,1
3х = 2,1
х = 2,1 : 3
х₄ = 0,7