Алгоритм. Первым ходом Вася называет 1. Если число x оканчивается на k нулей, то S(x – 1) = 2011 + 9k. Таким образом Вася узнаёт положение самой правой ненулевой цифры в x. Положим x1 = x – 10k. Вася знает, что S(x1) = 2011. Подобрав на втором ходу число a так, что x – a = x1 – 1, Вася узнаёт сколько нулей в конце x1. Пусть их m. Положим x2 = x1 – 10m. Тогда S(x2) = 2010. Подобрав на третьем ходу число a так, что x – a = x2 – 1, Вася узнаёт сколько нулей в конце x2, и т. д. После 2012 хода он получит S(x2012) = 0, тем самым найдя x.
Оценка. Пусть Петя признался, что в записи x есть только нули и единицы, то есть x = 10k2012 + 10k2011 + ... + 10k1, где k2012 > k2011 > ... > k1. При этом задача Васи сводится к выяснению значений показателей ki. Пусть Васе не везёт, и на i-м ходу оказывается, что 10ki больше предъявленного Васей числа a. Тогда, независимо от значений k2012, ..., ki+1, S(x – a) = S(10ki – a) + (2012 – i). Тем самым, о значениях k2012, ..., ki+1 ничего не известно (кроме того, что все они больше ki). В частности, после 2011 ходов может остаться неизвестным точное значение k2012.
Длина единичной числовой окружности, которую применяют для решения тригонометрическ заданий и уравнений, равняется числу пи, то есть ~3,14.
Так как на окружности есть 4 координатные четверти, то каждая из низ примерно равна 0,785.
Исходя из этого можно сделать вывод, что число 1 находится во 2 координатной четверти, число 2 в 3 координатной четверти, 3 в 4 координатной четверти, 4 снова во 2 координатной четверти.
Алгоритм. Первым ходом Вася называет 1. Если число x оканчивается на k нулей, то S(x – 1) = 2011 + 9k. Таким образом Вася узнаёт положение самой правой ненулевой цифры в x. Положим x1 = x – 10k. Вася знает, что S(x1) = 2011. Подобрав на втором ходу число a так, что x – a = x1 – 1, Вася узнаёт сколько нулей в конце x1. Пусть их m. Положим x2 = x1 – 10m. Тогда S(x2) = 2010. Подобрав на третьем ходу число a так, что
x – a = x2 – 1, Вася узнаёт сколько нулей в конце x2, и т. д. После 2012 хода он получит S(x2012) = 0, тем самым найдя x.
Оценка. Пусть Петя признался, что в записи x есть только нули и единицы, то есть x = 10k2012 + 10k2011 + ... + 10k1, где k2012 > k2011 > ... > k1. При этом задача Васи сводится к выяснению значений показателей ki. Пусть Васе не везёт, и на i-м ходу оказывается, что 10ki больше предъявленного Васей числа a. Тогда, независимо от значений k2012, ..., ki+1, S(x – a) = S(10ki – a) + (2012 – i). Тем самым, о значениях k2012, ..., ki+1 ничего не известно (кроме того, что все они больше ki). В частности, после 2011 ходов может остаться неизвестным точное значение k2012.
ответ 2012ходов
Длина единичной числовой окружности, которую применяют для решения тригонометрическ заданий и уравнений, равняется числу пи, то есть ~3,14.
Так как на окружности есть 4 координатные четверти, то каждая из низ примерно равна 0,785.
Исходя из этого можно сделать вывод, что число 1 находится во 2 координатной четверти, число 2 в 3 координатной четверти, 3 в 4 координатной четверти, 4 снова во 2 координатной четверти.
sin1 - положительное значение, cos2 - отрицательное, tg3 - отрицательно, ctg4 - отрицательное.
(+) * (-) * (-) * (-) = (-).
ответ: значение данного произведения будет отрицательным на сердечко