В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Rameros
Rameros
22.09.2022 03:48 •  Алгебра

Вычисли 9-й член арифметической прогрессии, если известно, что a1 = −1,2 и d = 6,8.

Показать ответ
Ответ:
Tiggeri
Tiggeri
02.08.2022 19:55
Не уверенна что формула верная
2n+8n+5=k^2
10n+5=k^2

Программа на Руби

for n in -10000..10000
    for k in 0..1000
        p [n,k] if 10*n + 5 == k*k
    end
end

Вывод
[2, 5]
[22, 15]
[62, 25]
[122, 35]
[202, 45]
[302, 55]
[422, 65]
[562, 75]
[722, 85]
[902, 95]
[1102, 105]
[1322, 115]
[1562, 125]
[1822, 135]
[2102, 145]
[2402, 155]
[2722, 165]
[3062, 175]
[3422, 185]
[3802, 195]
[4202, 205]
[4622, 215]
[5062, 225]
[5522, 235]
[6002, 245]
[6502, 255]
[7022, 265]
[7562, 275]
[8122, 285]
[8702, 295]
[9302, 305]
[9922, 315]

т.е. подразумевается что есть и другие решения, если расширять диапазон
0,0(0 оценок)
Ответ:
semakina97
semakina97
14.07.2022 10:55
Дана функция у = (-1/3)x^3+x^2.
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
 f(-x) = (-1/3)x³ + x²  = (1/3)x³ + x² 
- Нет
 -f(-x) = -((-1/3)x³ + x²) = -((1/3)x³ + x²) = -(1/3)x³ - x² 
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
(-1/3)x³+ x² = 0.
-x³ + 3x² = 0.
-x²(x-3) = 0.
Имеем 2 корня: х = 0 и х = 3.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в y = (-1/3)x^3 +x^2.
y = (-1/3)0³+0² = 0. Точка: (0, 0) 
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = -x²+2x = -x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.
5-определить промежутки монотонности 
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х =                -0.5    0    0.5      1.5     2     2.5
y'=-x^2+2x   -1.25    0   0.75    0.75    0   -1.25
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Возрастает на промежутке
[0, 2]
Убывает на промежутках
(-oo, 0] U [2, oo)
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 0,
Максимум функции в точке: х = 2.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = (-1/3)*2³+2² = -8/3 + 4  = 4/3,
х = 0, у = 0.
8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)= -2х + 2 =-2(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
(-oo, 1]
Выпуклая на промежутках
[1, oo)

Иследуйте функцию и постройте график: f (x)=-1/3x^3+x^2
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота