Известно, что для того, чтобы дробь имела смысл, знаменатель её должен быть больше нуля. Поэтому искать значения х следует через неравенство:
х² - 12х + 20 > 0
Приравнять к нулю и решить как квадратное уравнение:
D=b²-4ac =144 - 80 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(12-8)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(12+8)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х= 10, отмечаем эти точки схематично, смотрим на график.
На графике ясно видно, что х может принимать любые значения, кроме х=2 и х=10, знаменатель при таких значениях х равен нулю, что недопустимо.
Решение уравнения: х∈R (все значения х); х≠2; х≠10 (кроме 2 и 10).
вот:
Объяснение:
1) Дана система уравнений, которую будем решать методом подстановки.
7х + 3у = 43;
4х - 3у = 67;
2) Выразим переменную 3у через х в первом выражении:
3у = 43 - 7х;
4х - 3у = 67;
3) Подставим переменную 3у во второе выражение:
4х - (43 - 7х) = 67;
4) Раскроем скобки:
4х - 43 + 7х = 67
5) Упорядочим уравнение:
11х = 110
6) Найдем х:
х = 110 / 11 = 10;
8) Найдем у, подставив найденную переменную х в любое из выражений:
70 + 3у = 43;
3у = -27;
у = -27 / 3 = -9.
ответ: переменная х = 10, переменная у = -9.
В решении.
Объяснение:
Известно, что для того, чтобы дробь имела смысл, знаменатель её должен быть больше нуля. Поэтому искать значения х следует через неравенство:
х² - 12х + 20 > 0
Приравнять к нулю и решить как квадратное уравнение:
D=b²-4ac =144 - 80 = 64 √D= 8
х₁=(-b-√D)/2a
х₁=(12-8)/2
х₁=4/2
х₁=2;
х₂=(-b+√D)/2a
х₂=(12+8)/2
х₂=20/2
х₂=10.
Теперь начертим СХЕМУ параболы (ничего вычислять не нужно), которую выражает данное уравнение, ветви направлены вверх, парабола пересекает ось Ох при х= 2 и х= 10, отмечаем эти точки схематично, смотрим на график.
На графике ясно видно, что х может принимать любые значения, кроме х=2 и х=10, знаменатель при таких значениях х равен нулю, что недопустимо.
Решение уравнения: х∈R (все значения х); х≠2; х≠10 (кроме 2 и 10).