Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.) Вероятность: в) Если х=9, то у=9 Если х=8, то у=9 Получаем числа: 99, 89 (2 шт.) Вероятность: г) Если х=1, то у=1; 3 Если х=2, то у=1 Если х=3, то у=1 Числа: 11, 13, 21, 31 (4 шт.) Вероятность:
11, 13, 15, ..., 99 - двузначные натуральные нечетные
Найдем их общее количество: последовательность является арифметической прогрессией, где:
чисел
а)
Нечетное число:
Числа, удовлетворяющие условию: 11, 13, ..., 31
Их количество:
Вероятность:
б)
Условию будут удовлетворять числа: 91, 93, 95, 97, 99 (5 шт.)
Вероятность:
в)
Если х=9, то у=9
Если х=8, то у=9
Получаем числа: 99, 89 (2 шт.)
Вероятность:
г)
Если х=1, то у=1; 3
Если х=2, то у=1
Если х=3, то у=1
Числа: 11, 13, 21, 31 (4 шт.)
Вероятность:
на смену x и y функции y= 2x²-2x -5 вставляем координаты:
a(-2; 17)
17=2*(-2)²-2*(-2)-5
17=2*4+4-5=8+8-5=11
17≠11 не принадлежит
в(-1; 5)
5=2*(-1)^2-2*(-1)-5
5=2+2-5=-1
5≠-1 не принадлежит
с(1; -1);
-1=2*(-1)²-2*(-1)-5
-1=2+2-5=-1
-1=-1 принадлежит
м(2; 10);
10=2*(2)²-2*10-5
10=2*4-20-5
10=8-25= -17
11≠-17 не принадлежит
к(1.1/2; 3)
3=2*(5/2)²-2*(5/2)-5
3=2*25/4-10/2-5
3=12,5-5-5
3=12,5-10
3≠2,5 не принадлежит
р(1/4; 94,5)?
94,5=2*(1/4)²-2*(1/4)-5
94,5=2*1/16-2/4-5
94,5=1/8-1/2-5
94,5≠-47/16 не принадлежит