Б) f(x)=4-2x f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (-2) f`(0,5)=f`(-3)=-2
в) f(x)=3x-2 f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3 Применили правила: производная суммы( разности) равна сумме( разности) производных Производная постоянной (C)`=0 Постоянный множитель можно вынести за знак производной (х)`=1 Производная принимает во всех точках одно и то же значение (3) f`(5)=f`(-2)=3
В решении.
Объяснение:
Встановіть відповідність між виразами (1-4)тотожно рівними їм многочленами А-Д 1(2х+y)(y-2x) 2)(y-2x)квадраті 3)(Х+2у)(Х квадраті -2ху+4хквадраті) 4)(2х-2у)квадраті а)4х квадраті +8xy+4yквадраті б)у квадраті-4х квадраті в)х Кубі +8у Кубі Г)у квадраті -4ух+4х квадраті Д)4х квадраті+4ху+4у квадраті
Установите соответствие между выражениями (1-4) и тождественно равными им многочленами А-Д:
1) (2х+y)(y-2x) = у² - 4х²; Б;
2) (y-2x)² = у² - 4ху + 4х²; Г;
3) (х+2у)(х² -2ху + 4х²) = х³ + 8у³; В;
4) (2х+2у)² = 4х² + 8ху + 4у²; А.
А) 4х² + 8xy + 4y²;
Б) у² - 4х²;
В) х³ + 8у³:
Г) у² - 4ух + 4х²;
Д) 4х² + 4ху + 4у².
f`(x)=(4-2x)`=(4)`-(2x)`=0-2·(x)`=-2·1=-2
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (-2)
f`(0,5)=f`(-3)=-2
в) f(x)=3x-2
f`(x)=(3x-2)`=(3х)`-(2)`=3·(x)`-0=3·1=3
Применили правила:
производная суммы( разности) равна сумме( разности) производных
Производная постоянной (C)`=0
Постоянный множитель можно вынести за знак производной
(х)`=1
Производная принимает во всех точках одно и то же значение (3)
f`(5)=f`(-2)=3