Возможные исходы, бросая два кубика, можно оформить в таблице. Первая цифра в таблице указывает, сколько пунктов выпало на первом кубике, вторая — сколько пунктов на втором кубике. Всего 36 результатов. (см. на фото)
P(события) = все исходы;
P(сумма пунктов равна 4) = 3/36 (благоприятные исходы: 3/1 и 1/3; 2/2 - вместе 3 исходов);
P(сумма пунктов равна 2) =1/36 (1/1 — только 1 благоприятный исход);
P(сумма пунктов больше 9) = 6/36 (исход благоприятный, если выпадет 10, 11 или 12 пунктов, значит, вместе 3 + 2 + 1 = 6 исходов).
1. Проведемо перпендикуляри з точок С і Д на ав. Позначимо їх знижки за умовою
кут СКД=45.
2. З треуг. АВС СК-висота правильного трикутника
СК=АВ * sqrt {3} / 2=6
3. В треуг. АВД ДК-висота, опущена на підставу рівнобедреного трикутника. Як відомо, вона збігається з медіаною.
АК= АВ / 2= 2 sqrt {3}
З прямоуг. треуг. АКД за теоремою Піфагора
ДК= sqrt( АТ^2-АГ^2)= sqrt (14-12)= sqrt 2
4 у трикутнику СКД СК=6, СД=sqrt 2 . Кут СКД= 45
За теоремою косинусів
СД^2=36+2-2*6*sqrt 2*cos 45=26
СД=корінь з 26
А - сумма выпавших пунктов равна 6.
Объяснение:
Возможные исходы, бросая два кубика, можно оформить в таблице. Первая цифра в таблице указывает, сколько пунктов выпало на первом кубике, вторая — сколько пунктов на втором кубике. Всего 36 результатов. (см. на фото)
P(события) = все исходы;
P(сумма пунктов равна 4) = 3/36 (благоприятные исходы: 3/1 и 1/3; 2/2 - вместе 3 исходов);
P(сумма пунктов равна 2) =1/36 (1/1 — только 1 благоприятный исход);
P(сумма пунктов больше 9) = 6/36 (исход благоприятный, если выпадет 10, 11 или 12 пунктов, значит, вместе 3 + 2 + 1 = 6 исходов).
кут СКД=45.
2. З треуг. АВС СК-висота правильного трикутника
СК=АВ * sqrt {3} / 2=6
3. В треуг. АВД ДК-висота, опущена на підставу рівнобедреного трикутника. Як відомо, вона збігається з медіаною.
АК= АВ / 2= 2 sqrt {3}
З прямоуг. треуг. АКД за теоремою Піфагора
ДК= sqrt( АТ^2-АГ^2)= sqrt (14-12)= sqrt 2
4 у трикутнику СКД СК=6, СД=sqrt 2 . Кут СКД= 45
За теоремою косинусів
СД^2=36+2-2*6*sqrt 2*cos 45=26
СД=корінь з 26