Вполном конусе площадь основания равна 16псм^2, площадь осевого сечения 8см^2. вычеслить объем конуса 2) цилиндр пересечен плоскостью паралельной его оси и отсекающей от основания дугу 60 градусов. диоганаль сечения равна 15 см и состовляет с основанием угол в 30 градусов.
1)
площадь основания So=16Псм^2
радиус основания So= Пr^2 ; r=√So/П=√16П/П=√16=4 см
осевое сечение у конуса - равнобедренный треугольник, основание у которого равно диаметру d=2r=8 см ;площадь осевого сечения S=8см^2.
тогда высота конуса S=1/2*d*h ; h = 2S/d =2*8 / 8 = 2 см
выче(и)слить объем конуса V=1/3*So*h=1/3*16П*2=32П/3
ответ V=32П/3