1) Построим графики у=(х-2)^2 и у=(х+2)^2 а) у=(х-2)^2=x^2-4x+4 (график - парабола, ветви вверх) 1. Найдем точки пересечения с осью Ох x^2-4x+4=0; D=16-16=0; х=2 2. Вершина имеет координаты (2;0) 3. Пересекается с осью Оу в точке (0;4) 4. Построим график (см. рисунок) б) у=(х+2)^2=x^2+4x+4 (график - парабола, ветви вверх) 1. Найдем точки пересечения с осью Ох x^2+4x+4=0; D=16-16=0; х=-2 2. Вершина имеет координаты (-2;0) 3. Пересекается с осью Оу в точке (0;4) 4. Построим график (см. рисунок) в) Проведем прямую у=1 2) Найдем площадь фигуры ограниченной параболами и прямой у=1 (заштрихована на рисунке) Площадь найдете как сумма трех интегралов
1) y=(1/(x+1)^3)-2 Производная этой функции равна:
Так как переменная производной находится в знаменателе, то производная не равна 0 и поэтому функция не имеет ни минимума, ни максимума. 1 f(x) = (- 3 / (x + 1)³) - 2 Область определения функции Точки, в которых функция точно не определена:x1 = -1. Функция только убывающая: -1 > x >-∞ и ∞ > x >-1. Точки пересечения с осью координат X График функции пересекает ось X при f = , значит надо решить уравнение: 1 -------- - 2 = 0 3 (x + 1) Точки пересечения с осью X:Аналитическое решение 2/3 2 x1 = -1 + ---- 2 Численное решениеx1 = -0.206299474016 Точки пересечения с осью координат YГрафик пересекает ось Y, когда x равняется 0:подставляем x = 0 в 1/((x + 1)^3) - 2.1 -- - 2 3 1 Результат:f(0) = -1Точка:(0, -1) График функции f = 1/((x + 1)^3) приведен в приложении. 2Экстремумы функции. Для того, чтобы найти экстремумы,нужно решить уравнениеd --(f(x)) = 0 dx (производная равна нулю),и корни этого уравнения будут экстремумами данной функции:d --(f(x)) = dx -3 ---------------- = 0 3 (x + 1)*(x + 1) Решаем это уравнение. Решения не найдены,значит экстремумов у функции нет Точки перегибов. Найдем точки перегибов, для этого надо решить уравнение 2 d ---(f(x)) = 0 2 dx (вторая производная равняется нулю),корни полученного уравнения будут точками перегибов для указанного графика функции, 2 d ---(f(x)) = 2 dx 12 -------- = 0 5 (1 + x) Решаем это уравнение. Решения не найдены,значит перегибов у функции нет Вертикальные асимптоты. Есть:x1 = -1 Горизонтальные асимптоты. Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 1 lim -------- - 2 = -2 x->-oo 3 (x + 1) значит,уравнение горизонтальной асимптоты слева:y = -2 1 lim -------- - 2 = -2 x->oo 3 (x + 1) значит,уравнение горизонтальной асимптоты справа:y = -2 Наклонные асимптоты. Наклонную асимптоту можно найти, подсчитав предел функции 1/((x + 1)^3) - 2, делённой на x при x->+oo и x->-oo 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->-oo x значит,наклонная совпадает с горизонтальной асимптотой справа 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->oo x значит,наклонная совпадает с горизонтальной асимптотой слева Чётность и нечётность функции. Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x).Итак, проверяем: 1 1 -------- - 2 = -2 + -------- 3 3 (x + 1) (1 - x) - Нет 1 1 -------- - 2 = 2 - -------- 3 3 (x + 1) (1 - x) - Нет, значит, функция не является ни чётной, ни нечётной.
а) у=(х-2)^2=x^2-4x+4 (график - парабола, ветви вверх)
1. Найдем точки пересечения с осью Ох
x^2-4x+4=0; D=16-16=0; х=2
2. Вершина имеет координаты (2;0)
3. Пересекается с осью Оу в точке (0;4)
4. Построим график (см. рисунок)
б) у=(х+2)^2=x^2+4x+4 (график - парабола, ветви вверх)
1. Найдем точки пересечения с осью Ох
x^2+4x+4=0; D=16-16=0; х=-2
2. Вершина имеет координаты (-2;0)
3. Пересекается с осью Оу в точке (0;4)
4. Построим график (см. рисунок)
в) Проведем прямую у=1
2) Найдем площадь фигуры ограниченной параболами и прямой у=1 (заштрихована на рисунке)
Площадь найдете как сумма трех интегралов
Производная этой функции равна:
Так как переменная производной находится в знаменателе, то производная не равна 0 и поэтому функция не имеет ни минимума, ни максимума.
1 f(x) = (- 3 / (x + 1)³) - 2 Область определения функции
Точки, в которых функция точно не определена:x1 = -1.
Функция только убывающая:
-1 > x >-∞ и ∞ > x >-1.
Точки пересечения с осью координат X График функции пересекает ось X при f = , значит надо решить уравнение: 1 -------- - 2 = 0 3 (x + 1) Точки пересечения с осью X:Аналитическое решение 2/3 2 x1 = -1 + ---- 2 Численное решениеx1 = -0.206299474016
Точки пересечения с осью координат YГрафик пересекает ось Y, когда x равняется 0:подставляем x = 0 в 1/((x + 1)^3) - 2.1 -- - 2 3 1 Результат:f(0) = -1Точка:(0, -1)
График функции f = 1/((x + 1)^3) приведен в приложении.
2Экстремумы функции. Для того, чтобы найти экстремумы,нужно решить уравнениеd --(f(x)) = 0 dx (производная равна нулю),и корни этого уравнения будут экстремумами данной функции:d --(f(x)) = dx -3 ---------------- = 0 3 (x + 1)*(x + 1) Решаем это уравнение. Решения не найдены,значит экстремумов у функции нет
Точки перегибов. Найдем точки перегибов, для этого надо решить уравнение 2 d ---(f(x)) = 0 2 dx (вторая производная равняется нулю),корни полученного уравнения будут точками перегибов для указанного графика функции, 2 d ---(f(x)) = 2 dx 12 -------- = 0 5 (1 + x) Решаем это уравнение. Решения не найдены,значит перегибов у функции нет
Вертикальные асимптоты. Есть:x1 = -1
Горизонтальные асимптоты. Горизонтальные асимптоты найдём с пределов данной функции при x->+oo и x->-oo 1 lim -------- - 2 = -2 x->-oo 3 (x + 1) значит,уравнение горизонтальной асимптоты слева:y = -2 1 lim -------- - 2 = -2 x->oo 3 (x + 1) значит,уравнение горизонтальной асимптоты справа:y = -2
Наклонные асимптоты. Наклонную асимптоту можно найти, подсчитав предел функции 1/((x + 1)^3) - 2, делённой на x при x->+oo и x->-oo 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->-oo x значит,наклонная совпадает с горизонтальной асимптотой справа 1 -------- - 2 3 (x + 1) lim ------------ = 0 x->oo x значит,наклонная совпадает с горизонтальной асимптотой слева
Чётность и нечётность функции. Проверим функцию чётна или нечётна с соотношений f = f(-x) и f = -f(-x).Итак, проверяем: 1 1 -------- - 2 = -2 + -------- 3 3 (x + 1) (1 - x) - Нет 1 1 -------- - 2 = 2 - -------- 3 3 (x + 1) (1 - x) - Нет, значит, функция не является ни чётной, ни нечётной.