В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
Человек1234512345
Человек1234512345
24.12.2022 08:16 •  Алгебра

Вначале на доске написано число 2019. если на доске написано число x, то можно дописать на доску число x−3 или 7x. какие числа большие 10 и меньшие 20 можно выписать на доску?

если ответов несколько — введите их все. каждое число нужно вводить в отдельном поле ввода в любом порядке. добавить поля ввода можно, нажав на плюсик рядом с уже введенным ответом.

Показать ответ
Ответ:
marypawgamesyt
marypawgamesyt
09.07.2020 06:12
1) f(x)=x³ -4x² +7x-2
    f(1)=1³ -4*1² +7*1 -2=1-4+7-2=2
 
    f '(x)=3x² -8x+7
    f '(1)=3*1² -8*1+7=3-8+7=2
 
    y=2+2(x-1)=2+2x-2=2x
    y=2x - уравнение касательной.

2) f(x)=(3x-2)/(x+1)
    f(1)=(3*1-2)/(1+1) = 1/2=0.5
 
    f ' (x)=[3(x+1)-(3x-2)]/(x+1)² =5/(x+1)²
    f ' (1)=5/(1+1)² =5/4=1.25
  
    y=0.5+1.25(x-1)=0.5+1.25x-1.25=1.25x-0.75
    y=1.25x - 0.75 - уравнение касательной

3) f(x)=√(3-x)
    f(-1)=√(3+1)=2
 
    f ' (x)= -1/(2√(3-x))
    f ' (-1)= -1/(2√(3+1))= -1/4 = -0.25
 
    y=2-0.25(x+1)= -0.25x+1.75
    y= -0.25x+1.75 - уравнение касательной

4) f(x)=cos2x
    f(π/4)=cos(π/2)=0
 
    f '(x)= -2sin2x
    f '(π/4)= -2sin(π/2)= -2
 
    y=0 -2(x- (π/4))= -2x + (π/2)
    y= -2x + (π/2) - уравнение касательной
0,0(0 оценок)
Ответ:
ivan497
ivan497
19.01.2022 16:38

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота