Теория вероятности, причем задача из простых.
Рассмотрим все карточки, у нас есть 3 буквы "А", 1 буква "Т" и одна буква "К"
Пусть мы тянем в первый раз карточку, нам нужна буква "А", а таких 3, следовательно вероятность 60% или 0.6.
Потом нам нужна буква "Т", но она одна и осталось 4 карточки => вероятность 1/4 или 0.25
Потом нам нужна снова буква "А", но их 2 осталось и 3 карточки => вероятность 2/3
Потом нам нужна буква "К", но она одна и осталось 2 карточки => вероятность 1/2 или 0.5
Осталась одна карточка и одна буква => вероятность 100% или 1
Потом все значения перемножаем
0.6* 0.25 * 2/3 * 0.5 * 1= 0.05
нам нужна такая перестановка карточек как- атака(1), но таких перестановок может быть
P! ( где р - количество карт), вычислим 5!=5(5-1)(5-2)(5-3)(5-4)=5x4x3x2x1=120
Значит вероятность n=1/120
Теория вероятности, причем задача из простых.
Рассмотрим все карточки, у нас есть 3 буквы "А", 1 буква "Т" и одна буква "К"
Пусть мы тянем в первый раз карточку, нам нужна буква "А", а таких 3, следовательно вероятность 60% или 0.6.
Потом нам нужна буква "Т", но она одна и осталось 4 карточки => вероятность 1/4 или 0.25
Потом нам нужна снова буква "А", но их 2 осталось и 3 карточки => вероятность 2/3
Потом нам нужна буква "К", но она одна и осталось 2 карточки => вероятность 1/2 или 0.5
Осталась одна карточка и одна буква => вероятность 100% или 1
Потом все значения перемножаем
0.6* 0.25 * 2/3 * 0.5 * 1= 0.05
нам нужна такая перестановка карточек как- атака(1), но таких перестановок может быть
P! ( где р - количество карт), вычислим 5!=5(5-1)(5-2)(5-3)(5-4)=5x4x3x2x1=120
Значит вероятность n=1/120