Вкакой точке пересекаются графики функций y=-10x+13 и y=100x+13 как расположены точки координатной плоскости, у которых обсцысса меньше ординаты у которых обсцисса меньше 4 а ордината больше одного !
Сократите дробии.( знак деления записан вместо знака дроби). ответ желательно распишите.. А)3√13-6:√26-√8 б)√7-√6:√56-√48-√21+√18
ответ или решение1

Ильина Елизавета
(3√13 – 6) / (√26 - √8).
Избавимся от иррациональности в знаменателе, для этого умножим числитель и знаменатель на выражение: (√26 + √8) и свернем знаменатель но формуле сокращенного умножения разность квадратов.
1. Нет. Одночлен - это произведение числовых и буквенных множителей и их степеней.
2. Да
3. Да. Или если точнее, то буквенный множитель (коэффициент) - число, стоящее перед буквой.
4. Да
5. Нет. Коэффициент одночлена - числовой множитель одночлена, записанный в стандартном виде.
6. Да
7. Нет. Подобные одночлены - одночлены, имеющие общий коэффициент.
8. Да
9. Да
10. Да. Если точнее, то одночлены, записанные в стандартном виде, называется многочленом стандартного вида.
11. Нет. Чтобы привести подобные члены, нужно сложить числовые множители и умножить на буквенное выражение.
12. Да
13. Да.
Войти

Аноним
Математика
06 октября 23:06
Сократите дробии.( знак деления записан вместо знака дроби). ответ желательно распишите.. А)3√13-6:√26-√8 б)√7-√6:√56-√48-√21+√18
ответ или решение1

Ильина Елизавета
(3√13 – 6) / (√26 - √8).
Избавимся от иррациональности в знаменателе, для этого умножим числитель и знаменатель на выражение: (√26 + √8) и свернем знаменатель но формуле сокращенного умножения разность квадратов.
(3√13 – 6) * (√26 + √8) / (√26 - √8) * (√26 + √8) = (3√13 – 6) * (√26 + √8) / (26 – 8) = (3√13 – 6) * (√26 + √8) / 18.
Раскроем скобки в числителе:
(3√13 – 6) * (√26 + √8) / 18 = (3 √13 √26 + 3 √13 √8 - 6√26 - 6√8) / 18 = (3 * 13 * √2 + 3 * 2 * √26 – 6 √26 - 12√2) / 18 = (39√2 - 12√2) / 18 = 27√2 / 18 = 9√2 / 2.
(√7 - √6) / (√56 - √48 - √21 + √18).
Упростим знаменатель:
√56 - √48 - √21 + √18 = (√56 - √48) – (√21 - √18) = (√7 √8 - √8 √6) – (√3 √7 - √3 √6) = √8 (√7 - √6) - √3 (√7 - √6) = (√7 - √6) (√8 - √3).
Получим дробь:
(√7 - √6) / (√56 - √48 - √21 + √18) = (√7 - √6) / (√7 - √6) (√8 - √3) = 1 / (√8 - √3).
Избавимся от иррациональности в знаменателе, для этого умножим числитель и знаменатель на выражение: (√8 + √3):
1 / (√8 - √3) = (√8 + √3) / (√8 - √3) (√8 + √3) = (√8 + √3) / (8 – 3) = (√8 + √3) / 5 =
(2√2 + √3) / 5 = 2√2 / 5 +√3 / 5.