task/29414095
1) Найти ООФ y = √ (x² - 4) / (4-x)
Подкоренное выражение должно быть неотрицательным (x² - 4) / (4-x) ≥ 0 ⇔ (x+2)(x-2) / (4 - x) ≥ 0 ⇔(x+2)(x-2) / (x - 4) ≤ 0 методом интервалов
[ -2] [2] (4)
ответ : x ∈ ( - ∞ ; - 2 ] ∪ [2 ; 4 ) .
2) Упростить выражение
a) sinx + sin2x +sin3x +sin4x = (sin3x+sinx) +(sin4x +sin2x) =
2sin2xcosx+2sin3xcosx =2cosx(sin3x+sinx) =2cosx*2sin2x*cosx =4sin2xcos²x.
* * * sin(α + β) =2sin( (α + β)/2 )* cos ( (α + β)/2) * * *
b) 1 /(tg3x - tgx) - 1 /(ctg3x - ctgx) =
1 / ( sin(3x-x) / cos3xcosx ) - 1/ ( sin(x-3x) /sinxsin3x ) =
cos3xcosx/sin2x + sin3xsinx/sin2x =(cos3xcosx + sin3xsinx) / sin2x =
cos2x / sin2x= ctg2x .
* * * tgα - tgβ =sin(α - β) /cosαcosβ ;ctgα - ctgβ =sin(β -α) / sinαsinβ
sin(α - β)=sinα*coβ - cosα*sinβ ;cos(α - β)=cosα*coβ+sinα*sinβ * * *
100% - количество коров на 2-й ферме
100% - 12% = 88% - количество коров на 1-й ферме
Обозначим все это через переменные:
х - количество коров на 2-й ферме
0,88х - количество коров на 1-й ферме
теперь:
100% - молока дает каждая корова на 2-й ферме
100% + 7,5% = 107,5% - молока дает каждая корова на 1-ой ферме
у литров молока дает каждая корова на 2-й ферме
107,5% от у = у : 100% · 107,5% = 1,075у литров молока дает каждая корова на 1-ой ферме.
Узнаем сколько молока получает каждая ферма.
1,075у · 0,88х = 0,946ху л молока получает 1-ая ферма.
ху л молока получает 2-ая ферма.
Переводим в проценты:
ху = 100% молока получает вторая ферма, тогда
0,946ху = 0,946·100% = 94,6% молока получает первая ферма.
Очевидно, что 2-я получает больше 1-й
100% - 94,6% = 5,4%
ответ: на 5,4% вторая 2-я получает больше первой.
task/29414095
1) Найти ООФ y = √ (x² - 4) / (4-x)
Подкоренное выражение должно быть неотрицательным (x² - 4) / (4-x) ≥ 0 ⇔ (x+2)(x-2) / (4 - x) ≥ 0 ⇔(x+2)(x-2) / (x - 4) ≤ 0 методом интервалов
[ -2] [2] (4)
ответ : x ∈ ( - ∞ ; - 2 ] ∪ [2 ; 4 ) .
2) Упростить выражение
a) sinx + sin2x +sin3x +sin4x = (sin3x+sinx) +(sin4x +sin2x) =
2sin2xcosx+2sin3xcosx =2cosx(sin3x+sinx) =2cosx*2sin2x*cosx =4sin2xcos²x.
* * * sin(α + β) =2sin( (α + β)/2 )* cos ( (α + β)/2) * * *
b) 1 /(tg3x - tgx) - 1 /(ctg3x - ctgx) =
1 / ( sin(3x-x) / cos3xcosx ) - 1/ ( sin(x-3x) /sinxsin3x ) =
cos3xcosx/sin2x + sin3xsinx/sin2x =(cos3xcosx + sin3xsinx) / sin2x =
cos2x / sin2x= ctg2x .
* * * tgα - tgβ =sin(α - β) /cosαcosβ ;ctgα - ctgβ =sin(β -α) / sinαsinβ
sin(α - β)=sinα*coβ - cosα*sinβ ;cos(α - β)=cosα*coβ+sinα*sinβ * * *
100% - количество коров на 2-й ферме
100% - 12% = 88% - количество коров на 1-й ферме
Обозначим все это через переменные:
х - количество коров на 2-й ферме
0,88х - количество коров на 1-й ферме
теперь:
100% - молока дает каждая корова на 2-й ферме
100% + 7,5% = 107,5% - молока дает каждая корова на 1-ой ферме
у литров молока дает каждая корова на 2-й ферме
107,5% от у = у : 100% · 107,5% = 1,075у литров молока дает каждая корова на 1-ой ферме.
Узнаем сколько молока получает каждая ферма.
1,075у · 0,88х = 0,946ху л молока получает 1-ая ферма.
ху л молока получает 2-ая ферма.
Переводим в проценты:
ху = 100% молока получает вторая ферма, тогда
0,946ху = 0,946·100% = 94,6% молока получает первая ферма.
Очевидно, что 2-я получает больше 1-й
100% - 94,6% = 5,4%
ответ: на 5,4% вторая 2-я получает больше первой.