Задание: разложить на множители. множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов. преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители. 1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем: m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
множители - компоненты при умножении ⇒выражение представляет собой произведение многочленов.
преобразовать данное выражение так, чтобы в каждом слагаемом были одинаковые множители.
1. m-n+p(m-n). 3-е слагаемое состоит из двух множителей р и (m-n), значит первое и второе слагаемое группируем и записываем (m-n). необходимо представить в виде произведения двух множителей. один множитель (m-n), второй множитель в этом слагаемом может быть только 1. получаем:
m-n+p(m-n)=(m-n)*1+p*(m-n)=(m-n)*(1-p)
4q(p-1)+p-1=4q*(p-1)+(p-1)*1=(p-1)*(4q+1)
4q(p-1)+1-p=4q*(p-1)-1*(p-1)=(p-1)*(4q-1)
Объяснение:
Три числа, первое из которых равно 5, составляют геометрическую прогрессию. Если от первого числа вычесть 20, а второе и третье оставить без изменений, то новые три числа образуют арифметическую прогрессию. Запиши эту арифметическую прогрессию.
5; 5q; 5q² геометрическая прогрессия
5-20; 5q; 5q² арифметическая прогрессия
по характеристическому свойству
арифметической прогрессии
2 · 5q = -15 + 5q² |:5
q² - 2q - 3 = 0
D=b² - 4ac
D=4 + 12 = 16
q₁ = (2 + 4)/2 =3
тогда арифметическая прогрессия: -15; 15; 45
q₂ = (2 - 4)/2 = -1
тогда арифметическая прогрессия: -15; -5; 5
О т в е т: -15; 15; 45 или -15; -5; 5