В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
JesperWecksell
JesperWecksell
18.07.2022 15:05 •  Алгебра

Верно ли, что любое положительное рациональное число можно представить как отношение произведения факториалов (не обязательно разных) простых чисел? например

Показать ответ
Ответ:
gjjfdkjgfyijh
gjjfdkjgfyijh
08.07.2020 09:20
Верно.
Покажем, что любое натуральное число N можно представить в указанном виде (а значит, и отношение натуральных чисел будет представимо в таком виде).
Если N = 1, можно написать, например, N = 2! / 2!
По основной теореме арифметики любое натуральное число, большее 1, однозначно (с точностью до порядка сомножителей) представимо в виде произведения простых множителей:
N=p_{\alpha_1}^{\beta_1}p_{\alpha_2}^{\beta_2}\dots p_{\alpha_k}^{\beta_k}
(alpha - номер простого числа; все простые числа расположены в порядке возрастания)

Докажем требуемое утверждение индукцией по alpha_k.
База: Для alpha_k = 1 утверждение очевидно: первое простое число совпадает со своим факториалом: 2 = 2!
Переход. Пусть для всех alpha_k < m утверждение задачи выполнено. Пусть N = Q * p^l, причем номер p равен m и Q не делится на p.
1) Q по предположению представимо в нужном виде.
2) Заметим, что p = p! / (p-1)!. (p-1)! не содержит простых чисел с номерами, не меньших m, так что по предположению индукции представимо в виде дроби нужного вида. Тогда и p!/(p-1)! представимо в нужном виде.
3) Остается перемножить дробь для Q и l дробей для p.
Переход доказан.
0,0(0 оценок)
Популярные вопросы: Алгебра
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота