в ящике 10 деталей, среди которых семь окрашенных. сборщик наудачу извлекает четыре детали. Найти вероятность того, что все извлеченные детали окажутся окрашенным
1)Все жители не могут быть лгунами, иначе каждый из них сказал бы правду(противоречит условию).
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.
У выражение: (√6+√3)×√12-2√6×√3
1. Раскроем скобки:
(√6+√3)×√12=√12×√6+√12×√3=√72+√36=√72+6
2. Представим 72 как произведение 36 и 2:
√72+6=√36×2+6=√36×√2+6=6√2+6
3. Разберём подробнее 2√6×√3:
2√6×√3=2×√6×3=2×√18
4. Представим √18 как произведение чисел 9 и 2:
2×√18=2×√9×2=2×√9×√2=2×3√2=6√2
5. Подставим полученные значения (действия 2 и 4):
(√6+√3)×√12-2√6×√3=6√2+6 - 6√2=6
ОТВЕТ: 6
В одно действие:
(√6+√3)×√12 - 2√6×√3=√12×√6+√12×√3 - 2√18=√72+√36 - 2√9×2=√72+6
- 2×3√2= √36×2+6 - 6√2=6√2+6-6√2=6
Объяснение:
2)Возьмем случайного рыцаря. Из утверждения вытекает, что лжецов на острове больше, чем (2015−1)\2=1007, то есть не менее 1007 лжецов.
3)Возьмем случайного лжеца. Его заявление ложно,т.к. кроме него не более половины жителей острова — лжецы. получается, что кроме него на острове не более 2014\2=1007 лжецов (то есть не более 1007), т.е. вместе с ним лжецов не более 1007.
4)из 2) и 3) следует, что: единственный вариант - это когда на острове ровно 1007 лжецов.