Объяснение:
1. Преобразуйте в многочлен:
1) (a + 4)²=a²+8a+16 2) (3у - с)²=9y²-6cy+c²
3) (2a - 5)( 2a + 5) =4a²-25 4) (x² + y)( x² - y)=x^4-y²
2. Разложите на множители:
1) 0,36 – с²=(0,6-c)(0,6+c) 2) 5a² + 10a=5a(a+2)
3) 16x² – 49=(4x)²-7²=(4x-7)(4x+7)
3) Упростите выражение: (m - 1)(т + 1) - (т - 3)=mt-2t+m+2
4. Выполните действия:
a) 3(1 + 2xy)( 1 - 2xy) =3(1-4x²y²)=3-12x²y² б) (x²-y)=(x-√y)(a+√y)
5. Решите уравнение: (x - 2)(x + 2) - x(x + 5) = - 8
X²-4-x²-5x=-8
-5x=-4
X=4/5=0,8
Площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x равна (16,5 +6 ln6) ед.²
Требуется найти площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x.
Площадь фигуры найдем по формуле:
Дано:
Построим графики и определим область, которая ограничена данными линиями.
1.
-линейная функция, график прямая.
Для построения достаточно две точки:
х = -5, у=0;
х = 1, у=6.
Строим график.
2.
-функция обратной пропорциональности, график гипербола, расположенная в первой и третьей четвертях.
Возьмем четыре точки:
х = 1, у = 6;
х = 2, у = 3;
х = 3, у = 2;
х = 6, у = 3.
Строим одну ветвь гиперболы. Вторую строим симметрично начала координат.
3. Точки пересечения данных графиков:
(1; 6) и (-6; -1).
4. Видим, что искомая площадь состоит из двух площадей:
5. Найдем S₁.
Линия сверху f₂(x) = x+5, снизу f₁(x) = 0, слева b = -2, справа a = 1.
6. Найдем S₂.
f₂(x) = 6/x, f₁(x) = 0, b = 1, a = 6.
7. S = S₁ +S₂ = 13,5 + 6 ln6 (ед²)
Объяснение:
1. Преобразуйте в многочлен:
1) (a + 4)²=a²+8a+16 2) (3у - с)²=9y²-6cy+c²
3) (2a - 5)( 2a + 5) =4a²-25 4) (x² + y)( x² - y)=x^4-y²
2. Разложите на множители:
1) 0,36 – с²=(0,6-c)(0,6+c) 2) 5a² + 10a=5a(a+2)
3) 16x² – 49=(4x)²-7²=(4x-7)(4x+7)
3) Упростите выражение: (m - 1)(т + 1) - (т - 3)=mt-2t+m+2
4. Выполните действия:
a) 3(1 + 2xy)( 1 - 2xy) =3(1-4x²y²)=3-12x²y² б) (x²-y)=(x-√y)(a+√y)
5. Решите уравнение: (x - 2)(x + 2) - x(x + 5) = - 8
X²-4-x²-5x=-8
-5x=-4
X=4/5=0,8
Площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x равна (16,5 +6 ln6) ед.²
Объяснение:
Требуется найти площадь фигуры ограниченной линиями f(x)=x+5, g(x)=6/x, x=-2, x=6 и осью 0x.
Площадь фигуры найдем по формуле:
Дано:
Построим графики и определим область, которая ограничена данными линиями.
1.
-линейная функция, график прямая.
Для построения достаточно две точки:
х = -5, у=0;
х = 1, у=6.
Строим график.
2.
-функция обратной пропорциональности, график гипербола, расположенная в первой и третьей четвертях.
Возьмем четыре точки:
х = 1, у = 6;
х = 2, у = 3;
х = 3, у = 2;
х = 6, у = 3.
Строим одну ветвь гиперболы. Вторую строим симметрично начала координат.
3. Точки пересечения данных графиков:
(1; 6) и (-6; -1).
4. Видим, что искомая площадь состоит из двух площадей:
5. Найдем S₁.
Линия сверху f₂(x) = x+5, снизу f₁(x) = 0, слева b = -2, справа a = 1.
6. Найдем S₂.
f₂(x) = 6/x, f₁(x) = 0, b = 1, a = 6.
7. S = S₁ +S₂ = 13,5 + 6 ln6 (ед²)