В столярной мастерской работают мастер и его ученик. За сколько дней мастер может изготовить кресло, если ученик на изготовление кресла тратит на 8 дн(-ей, -я) больше, чем мастер, а работая одновременно, они могут эту работу сделать за 3 дн(-ей, -я)?
Мастер может изготовить кресло за
дн(-ей, -я).
ДАНО
у = х²+4х+3 = 0
РЕШЕНИЕ
Надо привести уравнение к виду
y = (х+a)² + b
Используем правило, что можно прибавить и вычесть одно и тоже выражение и равенство не изменится.
y = x² + 2*2x + 2² - 4 + 3 = 0
y = (x+2)² - 1.
Координата начала параболы х= -2 и у = -1 -
Строим обычную параболу у=х² с началом в этой точке.
ВРЕДНЫЙ СОВЕТ - так не надо решать задачу.
Чтобы решить графически надо решить алгебраически.
Решаем квадратное уравнение и получаем корни - х1 = -1 и х2 =3 и при х=0 - у(0) = 3.
Теперь можно и график построить.
1) 2sin x-1=0
sinx = 1/2
x = (-1)^n arcsin(1/2) + πk, k∈Z
x = (-1)^n (π/6) + πk, k∈Z
2) cos(2x+П/6)+1=0
cos(2x+П/6) = - 1
2x+П/6 = π + 2πn, n∈Z
2x = π - π/6 + 2πn, n∈Z
2x = 5π/6 + 2πn, n∈Z
x = 5π/12 + πn, n∈Z
3) 6sin²x - 5cosx + 5 = 0
6(1 - cos²x) - 5cosx + 5 = 0
6 - 6cos²x - 5cosx + 5 = 0
6cos²x + 5cosx - 11 = 0
cosx = t, ItI ≤ 1
6t² + 5t - 11 = 0
D = 25 + 4*6*11 = 289
t₁ = (- 5 - 17)/12
t₁ = - 22/12
t₁ = -11/6
t₁ = - 1 (5/6) не удовлетворяет условию ItI ≤ 1
t₂ = (- 5 + 11)/12
t₂ = 1/2
cosx = 1/2
x = (+ -)arccos(1/2) + 2πm, m∈Z
x = (+ -) *(π/3) + 2πm, m∈Z