В школе с углубленным изучением иностранных языков провели опрос среди 70 учащихся. Ученикам задали вопрос: "Какие иностранные языки вы изучаете?". Выяснилось, что 32 учеников изучают английский, 21 - французский, 20 - немецкий. 9 школьников изучают английский и немецкий, 8 - английский и французский, 6 - французский и немецкий. 15 школьника не изучают ни английский, ни французский, ни немецкий. Сколько школьников опрос, изучают одновременно три языка: английский, французский и немецкий?
1) y-2. ОДЗ: y≠2
2) a-1. ОДЗ: a≠1
Объяснение:
№1. (y+2+):=:==y-2. ОДЗ: y≠2
№2. (a+1+):=:==a-1. ОДЗ: a≠1
ОДЗ - область допустимых значений. Т.е. когда мы сокращаем что-либо в числителе и знаменателе, то мы можем потом включить это число в решения. То есть, например, в первом номере мы сокращаем скобку y-2. Тем самым мы сознательно "пропускаем" в решения (если бы мы не просто упрощали, а решали такое уравнение). Но эта скобка стоит у нас в знаменателе. А знаменатель не может быть равен 0, т.к. на 0 делить нельзя. Значит нужно исключить решение такого уравнения: y-2=0, т.е. y не равен 2. В первом номере скобку y^2+4 мы не выносим в ОДЗ, потому что если мы будем решать такое уравнение: y^2+4=0, то увидим, что оно никогда не будет равно 0. Квадрат любого числа - число неотрицательное по определению, а неотрицательное+положительное=положительное, т.е. не равное 0. Поэтому эту скобку мы не вносим в ОДЗ. Во втором номере мы сокращаем a^2, т.е. автоматически "пропускаем" a=0. Значит нужно его исключить. Также мы сокращаем скобку a-1, значит нужно исключить решение уравнения a-1=0, т.е. a не равно 1.
<> [ Здравствуйте, Dodododpdododp! ] <>
- - - -
<> [ • ответ и Объяснение: ] <>
- - - -
<> [ Нет, Вы не правы. Оно не имеет бесконечное множество решений. Потому что: ] <>
- - - -
<> [ • (x, y) = (0, 1) ] <>
- - - -
<> [ А теперь, если Вы не верите, то мы можем даже и проверить, является ли упорядоченная пара чисел выше решением системы уравнений: ] <>
- - - -
{ 0 + 1 = 1
{
{ 0 + 4 x 1 = 4
- - - -
<> [ А у мы это так: ] <>
- - - -
{ 1 = 1
{
{ 4 = 4
- - - -
<> [ Итог: Упорядоченная пара чисел является решением системы уравнений, так как оба равенства верны. ] <>
- - - -
<> [ С уважением, Hekady! ] <>