В прямоугольном треугольнике АFС угол между биссектрисой СК и высотой СН, проведёнными из вершины прямого угла С, равен 15°. Сторона АF = 48 см. Найдите сторону АС, если известно, что точка К лежит между F и Н. 1. 34 cм 2. 28 см 3. 48 см 4. 24 см
Условные обозначения: <= -меньше либо равно >= - больше либо равно Pi - число Пи
-1 <= cos(3x)<=1 Решаем систему: cos(3x)<=1, cos(3x)>=-1; Косинус равен единице при 2*Pi*n, n=0, +1, -1, +2, -2, .. Косинус равен минус единице при Pi + 2*Pi*n, n=0, +1, -1, +2, -2, .. Система примет вид: 3x <= 2*Pi*n, 3x >= Pi + 2*Pi*n; Итого, что касается косинуса: x <= (2/3)*Pi*n, x>=(Pi/3) + (2/3)*Pi*n,
Если смотреть по оси X, то график самого косинуса у тебя будет определен на кусочках, отмеченных 00. На отрицательной оси тоже такие же кусочки будут. По Y график на этих интервалах будет ограничен -1 снизу и 1 сверху.
1) Sin x = 1 или Sin x = -1 x = π/2 + πk, k ∈Z x = -π/2 + πn, n ∈Z оба решения совпадают в ответ любое 2)Cos² x = 1/2 Cosx = √2/2 или Cos x = -√2/2 x = +- π/4 +2πk, k∈z x = +- 3π/4 + 2πn , n ∈Z 3) Cos² x - Cos x = 0 Cos x(Cos x -1) = 0 Cos x = 0 или Cos x -1 = 0 x = π/2 + πk , k ∈Z Cos x = 1 x = 2πn , n∈Z 4)tg x = 4Ctgx |·tg x≠0 tg² x = 4 tg x = 2 или tg x = -2 x = +-arctg2 + πk , k∈Z
Условные обозначения:
<= -меньше либо равно
>= - больше либо равно
Pi - число Пи
-1 <= cos(3x)<=1
Решаем систему:
cos(3x)<=1,
cos(3x)>=-1;
Косинус равен единице при 2*Pi*n, n=0, +1, -1, +2, -2, ..
Косинус равен минус единице при Pi + 2*Pi*n, n=0, +1, -1, +2, -2, ..
Система примет вид:
3x <= 2*Pi*n,
3x >= Pi + 2*Pi*n;
Итого, что касается косинуса:
x <= (2/3)*Pi*n,
x>=(Pi/3) + (2/3)*Pi*n,
Если смотреть по оси X, то график самого косинуса у тебя будет определен на кусочках, отмеченных 00. На отрицательной оси тоже такие же кусочки будут. По Y график на этих интервалах будет ограничен -1 снизу и 1 сверху.
... 0000
(2/3)*Pi(Pi/3) + (2/3)*Pi (4/3)*Pi (2*Pi)/3 + (4/3)*Pi
n=1.n=2
График всей функции будет поднят по оси Y на 2
x = π/2 + πk, k ∈Z x = -π/2 + πn, n ∈Z
оба решения совпадают в ответ любое
2)Cos² x = 1/2
Cosx = √2/2 или Cos x = -√2/2
x = +- π/4 +2πk, k∈z x = +- 3π/4 + 2πn , n ∈Z
3) Cos² x - Cos x = 0
Cos x(Cos x -1) = 0
Cos x = 0 или Cos x -1 = 0
x = π/2 + πk , k ∈Z Cos x = 1
x = 2πn , n∈Z
4)tg x = 4Ctgx |·tg x≠0
tg² x = 4
tg x = 2 или tg x = -2
x = +-arctg2 + πk , k∈Z