В правильной шестиугольной пирамиде боковое ребро равно 3,а тангенс угла между боковой гранью и плоскостью основания равен 4 корня из 2.Найдите сторону основания пирамиды
1) cos5x + cos2x = 0 Воспользуемся формулой сложения косинусов: 2cos[(5x + 2x)/2]cos[(5x - 2x)/2] = 0 cos3,5x·cos1,5x = 0 Произведение равно нулю, когда хотя бы один из множителей равен нулю: cosx(7x/2) = 0 7x/2 = π/2 + πn, n ∈ Z 7x = π + 2πn, n ∈ Z x = π/7 + 2π/7, n ∈ Z cos(3x/2) = 0 3x/2 = π/2 + πn, n ∈ Z 3x = π + 2πn, n ∈ Z x = π/3 + 2π/3, n ∈ Z ответ: x = π/7 + 2π/7, n ∈ Z; π/3 + 2π/3, n ∈ Z.
2) sin3x + cos2x = 0 sin3x + sin(π/2 - 2x) = 0 Воспользуемся формулой сложения синусов: 2sin[(3x + π/2 - 2x)/2]cos[(3x - π/2 + 2x)/2] = 0 sin(x/2 + π/4)cos(5x/2 - π/4) = 0 sin(x/2 + π/4) = 0 x/2 + π/4 = πn, n ∈ Z x/2 = -π/4 + πn, n ∈ Z x = -π/2 + 2πn, n ∈ Z cos(5x/2 - π/4) = 0 5x/2 - π/4 = π/2 + πn, n ∈ Z 5x/2 = 3π/4 + πn, n ∈ Z 5x = 3π/2 + 2πn, n ∈ Z x = 3π/10 + 2πn/5, n ∈ Z ответ: x = -π/2 + 2πn, n ∈ Z; 3π/10 + 2πn/5, n ∈ Z.
1) (1,75; 5,75)
2) (3; 3)
3) у = 7х
Объяснение:
Точкой пересечения графиков функций будет точка, (х,у), подходящая для обоих равенств.
То есть строго говоря это такая точка (х, у), где х и у являются решением системы уравнений:
И искомые координаты точки будут (1,75; 5,75)
Можно решить проще:
Чтобы найти абсциссу (х) точки пересечения, приравняем
А ординату (у) точки пересечения найдем, подставив найденное значение (х) в любое из уравнений:
Например, в y = x + 4
И искомые координаты точки будут (1,75; 5,75)
ответ (1,75; 5,75)
2.
Найти точку графика, абсцисса которой равна ординате
То есть требуется найти такую точку (х,у) графика,
у которой х = у.
Строго говоря, тут также требуется решение системы:
Это как бы пересечение двух графиков:
у = 2х - 3 и у = х
Но можно и проще.
Найти точку графика, абсцисса которой равна ординате, т.е. у = х.
Значит, подставляем х вместо у в уравнение;
А так как по условию у = х, то
И искомые координаты точки будут (3; 3)
ответ: (3; 3)
3.
График линейной функции проходит через начало координат (т.е. точку О(0; 0)) и точку А(3; 21)
Следовательно, уравнение имеет форму
y = kx + b
причем т.к. график проходит через (0;0), следовательно
у(0) = 0 => 0 = k•0 + b <=> b = 0
а значит уравнение прямой имеет форму:
y = kx + 0 <=> y = kx
И т.к. график проходит через А(3; 21), следовательно
у(3) = 21 <=> k•3 = 21 <=> k = 21:3
k = 7
Итак, получили, что b = 0; k = 7
А значит уравнение примет вид:
у = 7х
ответ: у = 7х
Воспользуемся формулой сложения косинусов:
2cos[(5x + 2x)/2]cos[(5x - 2x)/2] = 0
cos3,5x·cos1,5x = 0
Произведение равно нулю, когда хотя бы один из множителей равен нулю:
cosx(7x/2) = 0
7x/2 = π/2 + πn, n ∈ Z
7x = π + 2πn, n ∈ Z
x = π/7 + 2π/7, n ∈ Z
cos(3x/2) = 0
3x/2 = π/2 + πn, n ∈ Z
3x = π + 2πn, n ∈ Z
x = π/3 + 2π/3, n ∈ Z
ответ: x = π/7 + 2π/7, n ∈ Z; π/3 + 2π/3, n ∈ Z.
2) sin3x + cos2x = 0
sin3x + sin(π/2 - 2x) = 0
Воспользуемся формулой сложения синусов:
2sin[(3x + π/2 - 2x)/2]cos[(3x - π/2 + 2x)/2] = 0
sin(x/2 + π/4)cos(5x/2 - π/4) = 0
sin(x/2 + π/4) = 0
x/2 + π/4 = πn, n ∈ Z
x/2 = -π/4 + πn, n ∈ Z
x = -π/2 + 2πn, n ∈ Z
cos(5x/2 - π/4) = 0
5x/2 - π/4 = π/2 + πn, n ∈ Z
5x/2 = 3π/4 + πn, n ∈ Z
5x = 3π/2 + 2πn, n ∈ Z
x = 3π/10 + 2πn/5, n ∈ Z
ответ: x = -π/2 + 2πn, n ∈ Z; 3π/10 + 2πn/5, n ∈ Z.